AUTONOMOUS
NANDYAL-518501, KURNOOL DIST., A.P., INDIA
DEPARTMENT OF MECHANICAL ENGINEERING

B.Tech -IV Year - I Sem

DEPARTMENT OF MECHANICAL ENGINEERING

(ESTD-1995)

Course Material

Mechanics of Composite Materials

Prepared By
M. ASHOK KUMAR

Assoc. Professor,
Department of Mechanical Engineering, RGMCET.

DEPARTMENT OF MECHANICAL ENGINEERING

CONTENTS

S.NO.	CONTENT	PAGE NOS.
1	VISION \& MISSION	$1-4$
2	ACADEMIC CALENDER	$5-6$
3	SYLLABUS	$7-8$
4	LESSON PLAN	$9-11$
5	LECTURE PLAN	$12-15$
6	UNIT-I	$18-96$
7	UNIT-II	$98-122$
8	UNIT-III	$123-176$
9	UNIT-IV	$180-$
10	UNIT-V	224
11	UNIT-IV	$225-285$
12	ASSIGNMENTS	$286-323$
13	MID EXAM PAPERS OF I \& II	$324-336$
14	END EXAM PAPERS WITH SCHEMES	$336-350-400$

RAJEEV GANDHI MEMORIAL COLLEGE OF ENGINEERING AND TECHNOLOGY

Autonomous
 MECHANICAL ENGINEERING

IV B.Tech, I-Sem (ME)

[A0338158] MECHANICS OF COMPOSITE MATERIALS

(Department Elective-III)

OBJECTIVE:

* This course provides students a background in modern lightweight composite materials which are being used in an ever-increasing range of applications and industries. Basic knowledge of composites will allow engineers to understand the issues associated with using these materials, as well as gain insight into how their usage differs from metals, and ultimately be able to use composites to their fullest potential.
OUTCOMES: At the end of the course, the student will be able to:
* Know the fundamental concepts of composite materials.
* Understand various manufacturing methods of composites.
* Learn macro and micro-mechanical analysis of a lamina.
* Understand failure theories, and to determine the strength of a lamina.

UNIT-I

Introduction to Composite Materials: Introduction, Classification: Polymer Matrix Composites. Metal Matrix Composites, Ceramic Matrix Composites, Carbon-Carbon Composites, Fiber. Reinforced Composites and nature-made composites, and applications.

UNIT-II

Reinforcements: Fibres- Glass, Silica, Kevlar, carbon, boron, silicon carbide, and boron carbide. fibres. Particulate composites, Polymer composites, Thermoplastics, Thermosets, Metal matrix and ceramic composites.

UNIT-III

Manufacturing Processes: Hand lay-up, Spray lay-up, Vacuum bagging, Pultrusion, Resin Transfer Molding (RTM), Filament winding.

UNIT-IV

Macro-Mechanical Analysis of a Lamina: Introduction, Definitions: Stress, Strain, Elastic Moduli, Strain Energy. Hooke's Law for Different Types of Materials - Anisotropic material, monoclinic material and orthotropic material, Hooke's Law for a Two Dimensional Unidirectional Lamina - Plane Stress Assumption, Reduction of Hooke's Law in Three Dimensions to Two Dimensions, Relationship of Compliance and Stiffness Matrix to Engineering Elastic Constants of a Lamina, Angle Lamina.

UNIT-V

Hooke's Law for a Two-Dimensional Angle Lamina, Engineering Constants of an Angle Lamina, Invariant Form of Stiffness and Compliance Matrices for an Angle Lamina, Strength Failure theories of an angle lamina- Maximum stress Failure Theory, Tsai-Hill Failure Theory, Tsai-Wu Failure Theory.

UNIT-VI

Micro-Mechanical Analysis of a Lamina: Introduction, Volume and Mass Fractions, Density, and Void Content, Evaluation of the Four Elastic Moduli - Longitudinal young's modulus, Transverse young's modulus, Major Poisson's ratio and In-plane shear modulus by Strength of Materials Approach, Semi Empirical Models, Ultimate Strengths of a Unidirectional Lamina- Longitudinal tensile strength, Transverse tensile strength, Longitudinal compressive strength, Transverse compressive strength. Ir. ${ }^{\text {- }}$

RAJEEV GANDHI MEMORIAL COLLEGE OF ENGINEERING AND TECHNOLOGY

Autonomous
 MECHANICAL ENGINEERING

strength.

TEXT BOOKS:

1. Mechanics of Composite Materials- Autar K. Kaw, 2/e, CRC Pubi.
2. Analysis and performance of fibre Composites, B. D. Agarwal and L.J. Broutman Wiley- Inter science,

REFERENCE BOOKS:

1. Engineering Mechanics of Composite Materials- Isaac and M Daniel, Oxford Univ. Press.
2. Mechanics of Composite Materials, R. M. Jones, Mc Graw Hill Company, New York.
3. Composite Materials Science and Engineering, Kishan K. Chawla, Springer.
4. Analysis of Laminated Composite Structures, L.R. Calcote, Van Nostrand Rainfold, New York,
5. Machanics of Composite Materials and Structures, madhujit Mukhpadhyay, New York. FIRST SEMESTER CENTRAL TIME TABLE FOR 2020-2021 ACADEMIC YEARW.e.f:12.02.2021

(ESYD-9995]

RAJEEV GANDHI MEMORIAL COLLEGE OF ENGINEERING \& TECHNOLOGY

 (AUTONOMOUS)Academic Diary for II-B.Tech., I-Semester (R19)
Academic Year: 2020-21 (After Mid-I exams)

	Jan-21		Feb-21		Mar-21		Apr-21	
Day	Date	Class	Date	Class	Date	Class	Date	Class
Sun				+,		- ${ }^{\text {a }}$,	/
Mon		, ,	1	5	1	29	Y/:	1
Tue		\%	2	6	2	30	,	W,
Wed			3	7	3	31	,	42.
Thu		\%	4	8	4	32	1	Nay
Fri	1	3,	5	9	5	33	2	Good Friday
Sat	2	,	6	10	6	34	3	II-I End
Sun	3	,	7	11:	7	,	4	\cdots
Mon	4		8	11	8	35	5	BJR's B'Day
Tue	5	4	9	12	9	36	6	II-I End
Wed	6		10	13	10	37	7	
Thu	7	.	11	14	11	Sivaratri	8	II-I End
Fri	8	,	12	15	12	38	9	
Sat	9	*	13	16	13	39	10	II-I End
Sun	10	4	14	\%	14	,	11	
Mon	11		15	17	15	40	12	Labs
Tue	12		16	18	16	Mid-II	13	Ugadi
Wed	13		17	19	17	Mid-II	14	BRA's B'Day
Thu	14		18	20	18	Mid-II	15	Labs
Fri	15		19	21	19	Mid-II	16	Labs
Sat	16		20	22	20	Mid-II	17	Labs
Sun	17		21	, \%	21	,	18	-
Mon	18	,	22	23	22	Mid-II	19	II-Sem
Tue	19		23	24	23	Mid-II	20	
Wed	20		24	25	24	Preparation	21	
Thu	21		25	26	25	Preparation	22	
Fri	22		26	27	26	Preparation	23	
Sat	23		27	28	27	II-I End	24	
Sun	24		28		28		25	
Mon	25	\%	,		29	II-I End	26	
Tue	26	,	,		30		27	
Wed	27	1		, \%	31	II-I End	28	
Thu	28	2	W2\%	TV4.	,	, , M, <	29	
Fri	29	3				,	30	
Sat	30	4		, \%	,			
Sun	31	,		,				-

1. Second Spell of Instructions
2. Slot for Assignment-II
3. Mid-II Examinations
4. Preparation
5. End Examinations
6. End Practical Examinations
7. Commencement of Class Work for II-Sem

: 27/01/2021-15/03/2021
: 10/03/2021-15/03/2021
: $16 / 03 / 2021-23 / 03 / 2021$
: 24/03/2021-26/03/2021
. 27/03/2021-10/04/2021
12/04/2021-17/04/2021
19/04/2021 Onwards

Date: 24-01-2021

RAJEEV GANDHI MEMORLAL COLLEGE OF ENGINEERING \& TECHNOLOGY
 NANDYAL-518501, KURNOOL DIST. A.P

Approved by AICTE, New Delhi, Affiliated to J.N.T.University, Anantapur Accredited by NBA, New Delhi, participated in World Bank aided TEQIP Ph: 08514-275201, 275203,275204, Fax: 08514-275123
DEPARTMENT OF MECHANICAL ENGINEERING
Page 1 of 4

Our Institution Vision

- To develop this rural based engineering college into an institute of technical education with global standards
- To become an institute of excellence which contributes to the needs of society
- To inculcate value based education with noble goal of "Education for peace and progress"

Our Institution Mission

- To build a world class undergraduate program with all required infrastructure that provides strong theoretical knowledge supplemented by the state of art skills
- To establish postgraduate programs in basic and cutting edge technologies.
- To create conductive ambiance to induce and nurture research
- To turn young graduates to success oriented entrepreneurs To develop linkage with industries to have strong industry institute interaction.
- To offer demand driven courses to meet the needs of the industry and society To inculcate human values and ethos into the education system for an all-round development of students.

Our Institution Quality Policy

- To improve the teaching and learning
- To evaluate the performance of students at regular intervals and take necessary steps for betterment
- To establish and develop centers of excellence for research and consultancy
- To prepare students to face the competition in the market globally and realize the responsibilities as true citizen to serve the nation and uplift the country's pride.

Vision:

RAJEEV GANDHI MEMORLAL COLLEGE OF ENGINEERING \& TECHNOLOGY
 NANDYAL-518501, KURNOOL DIST. A.P

Approved by AICTE, New Delhi, Affiliated to J.N.T.University, Anantapur Accredited by NBA, New Delhi, participated in World Bank aided TEQIP Ph: 08514-275201, 275203,275204, Fax: 08514-275123
DEPARTMENT OF MECHANICAL ENGINEERING
Page $\mathbf{2}$ of $\mathbf{4}$

To be a center of excellence by offering UG, PG and Research programs in cutting edge technologies of Mechanical Engineering in collaboration with industries

Department of Mechanical Engineering Mission

* To Produce Mechanical Engineers who are exceptionally competent, disciplined and have a sense of devotion to their profession by adapting modern teaching and learning process.
* To establish modern laboratory facilities to impart quality education in association with Industry- Institute interaction.
* To inculcate research orientation among the student community.

Department of Mechanical Engineering Program Specific Outcomes (PSO's)

1. The graduate will be able to design systems, components or process for broadly defined engineering technology problems appropriate to programme educational objectives
2. The graduates will be able to apply modern engineering tools viz., CAD/CAM packages for modeling, analysis and predicting simple to complex engineering activities with an understanding of the limitations
3. The graduate will be able to apply oral and graphical communication in both technical and non-technical environment
4. The graduate will be able to engage in self directed continuing professional development and have a strong commitment to address ethical and professional responsibilities.

Department of Mechanical Engineering Program Educational objectives (PEO's)

1. To apply modern computational, analytical, simulation tools and techniques to address the challenges faced in mechanical and allied engineering streams.
2. To Plan, design, construct, maintain and improve mechanical engineering systems that are technically sound, economically feasible and socially acceptable to enhance quality of life.

RAJEEV GANDHI MEMORLAL COLLEGE OF ENGINEERING \& TECHNOLOGY

NANDYAL-518501, KURNOOL DIST. A.P
Approved by AICTE, New Delhi, Affiliated to J.N.T.University, Anantapur Accredited by NBA, New Delhi, participated in World Bank aided TEQIP Ph: 08514-275201, 275203,275204, Fax: 08514-275123
DEPARTMENT OF MECHANICAL ENGINEERING
3. To Exhibit professionalism, ethical attitude, team spirit and pursue lifelong learning to achieve career and organizational goals
4. To communicate effectively using innovative tools and demonstrates leadership \& entrepreneurial skills.

Department of Mechanical Engineering Program Outcomes (PO's) Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

RAJEEV GANDHI MEMORLAL COLLEGE OF ENGINEERING \& TECHNOLOGY
 NANDYAL-518501, KURNOOL DIST. A.P

Approved by AICTE, New Delhi, Affiliated to J.N.T.University, Anantapur Accredited by NBA, New Delhi, participated in World Bank aided TEQIP
Ph: 08514-275201, 275203,275204, Fax: 08514-275123
DEPARTMENT OF MECHANICAL ENGINEERING
10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Lesson Plan
NAME OF THE FACULTY: Dr. M.ASHOK KUMAR CLASS/SEM: IV B.TECH/ISEM

ACADEMIC YEAR: 2020-2021
TOTAL HOURS: 50

NAME OF THE SUBJECT: [A0338158] MECHANICS OF COMPOSITE MATERIALS

S.No	DATE TOPIC	HOURS	REMARKS
	Introduction to Composite Materials: Classification: Polymer Matrix Composites (PMCs), matrix materials,reinforcements used in PMCs Metal Matrix Composites(MMCs) Ceramic Matrix Composites(CMCs) Carbon-Carbon Matrix Composites (CCMCs), Fiber Reinforced Composites	7	
	nature-made composites, and applications Reinforcements: Fibres, characteristics Glass Fiber, types Silica fiber Kevlar fiber Carbon fiber Boron fiber Boron carbide fiber, silicon carbide fiber. Particulate composites	I	
	Introduction to Manufacturing Processes:, Hand lay-up Spray lay-up, Vacuum bagging, Pultrusion,	9	

	Resin Transfer Molding (RTM), Filament winding		III
$\begin{aligned} & 27 \\ & 28 \\ & 29 \\ & 30 \end{aligned}$	Macro-Mechanical Analysis of a Lamina: Introduction, Definitions: Stress, Strain, Elastic Moduli, Strain Energy. Hooke"s Law for Different Types of Materials Anisotropic material, monoclinic material and orthotropic material, Hooke"s Law for a Two Dimensional Unidirectional Lamina - Plane Stress Assumption, Reduction of Hooke"s Law in Three Dimensions to Two Dimensions, Relationship of Compliance and Stiffness Matrix to Engineering Elastic Constants of a Lamina, Angle Lamina Problems Problems	12	IV
	Hooke"s Law for a Two-Dimensional Angle Lamina Engineering Constants of an Angle Lamina, Invariant Form of Stiffness and Compliance Matrices for an Angle Lamina, Strength Failure theories of an angle lamina- Maximum stress Failure Theory, Tsai-Hill Failure Theory, Tsai-Wu Failure Theory.		V

	Micro-Mechanical Analysis of a Lamina: Introduction, Volume and Mass Fractions, Density, and Void Content, Evaluation of the Four Elastic Moduli - Longitudinal young's modulus, Transverse young's modulus, Major Poisson's ratio and In- plane shear modulus by Strength of Materials Approach, Semi Empirical Models, Ultimate Strengths of a Unidirectional Lamina- Longitudinal tensile strength, Transverse tensile strength, Longitudinal compressive strength, Transverse compressive strength. In-Plane shear strength

Lecture Plan
NAME OF THE FACULTY: Dr. M.ASHOK KUMAR CLASS/SEM: IV B.TECH/ISEM

ACADEMIC YEAR: 2020-2021
TOTAL HOURS: 50

NAME OF THE SUBJECT: [A0338158] MECHANICS OF COMPOSITE MATERIALS

S.No	DATE	TOPIC	HOURS	REMARKS	
1		Introduction to Composite Materials:	1	I	
2		Classification: Polymer Matrix Composites (PMCs), matrix materials,reinforcements used in PMCs	1		
3		Metal Matrix Composites(MMCs)	1		
4		Ceramic Matrix Composites(CMCs)	2		
5		Carbon-Carbon Matrix Composites (CCMCs), Fiber	1		
6		Reinforced Composites	1		
7		nature-made composites, and applications	1		
8		Reinforcements: Fibres, characteristics	1		
9		Glass Fiber, types	1		
10		Silica fiber	2		
11		Kevlar fiber	2		
12		Carbon fiber	1		
13		Boron fiber	1		
14		Boron carbide fiber, silicon carbide fiber. Particulate composites	1	II	
15		Introduction to Manufacturing Processes:	2		
16		Hand lay-up	1		
17		Spray lay-up,	1		
18		Vacuum bagging,	1		

34		Strength Failure theories of an angle lamina-	2	
35	Maximum stress Failure Theory, Tsai- Hill Failure Theory, Tsai-Wu Failure Theory.	1		
36	Micro-Mechanical Analysis of a Lamina:			
37	Introduction, Volume and Mass Fractions, Density, and Void Content,	1	VI	
39	Evaluation of the Four Elastic Moduli - Longitudinal young's modulus, Transverse young's modulus, Major Poisson's ratio and In-plane shear modulus by Strength of Materials Approach,	1		

Dr. T. JAYACHANDRA PRASAD M.E.Ph.D.FIE.FIETE MNAFEN,MSTE,MIEEE

UNIT-I

Contents

> Introductions

> Classifications

- Polymer Matrix Composites
- Metal Matrix Composites
- Ceramic Matrix Composites
- Carbon-Carbon Composites
> Fibre
$>$ Reinforced Composites
$>$ Nature-made Composites
> Applications

INTRODUCTION

- A composite material can be defined as a combination of two or more materials (having significantly different physical or chemical properties) that results in better properties than those of the individual components.
- The constituents retain their identities in the composite; that is, they do not dissolve or otherwise merge completely into each other, although they act in concert.
- Composites are one of the most widely used materials because of their adaptability to different situations and the relative ease of combination with other materials to serve specific purposes and exhibit desirable properties.
- The main advantages of composite materials are their high strength and stiffness, combined with low densitv. when compared with bulk materials.

Why Composites?

Steel

- Low material cost
- High installed cost
- Corrosive
- Heavy
- Fabrication required
- High maintenance
- High material cost
- Low installed cost
- Non-corrosive
- Lightweight
- No fabrication required
- Low maintenance

Matrix Phase: continuous phase, surrounds other phase (e.g.: metal (Cu, Al, Ti, Ni1/4); , ceramic (SiC1/4), or polymer (Thermosets, thermoplastics, Elastomers)

Reinforcement Phase: dispersed phase, discontinuous phase (e.g.: Fibers, Particles, or Flakes)
? \rightarrow Interface between matrix and reinforcement Interfacial properties - the intertace may be regarded as a third phase.

Examples:

\pm Straw in mud
\pm Wood (cellulose fibers in hemicellulose and lignin) ond protein collagen and hard apatite minere。

Composites Offer

-High Strength to weight ratio
-High Stiffness to weight ratio
-High Modulus to weight ratio
-Light Weight
-Directional strength
-Corrosion resistance
-Weather resistance
-Dimensional stability -low thermal conductivity -low coefficient of thermal expansion

- Radar transparency
-Non-magnetic
-High impact strength
-High dielectric strength (insulator)
-Low maintenance
-Long term durability
-Part consolidation

Corriposite strenigith depends on the following factors:

- Inherent fiber strength, Fiber length, Number of flaws
- Fiber shape
- The bonding of the fiber (equally stress distribution)
- Voids

Mnicture (coupling
 R.GUColleg of Eng. Tech., (Autonompus)
NANDYAL 518 Son, Kurnool (Disi), A.P

What are composites ?

What are composites made of ?

- Human learns from 'mother nature' to develop new composite materials
- Natural Composites: wood and bamboo, shells, bones, muscles, other tissues and natural fibres (silk, wool, cotton, jute, sisal)

Definition

Thime lis) Shenalk nepreter dhenchentia of parnolas of iles deporsed phase that may inflacoot the

Two phase composite:
 Matrix is the continuous phase and surrounds the reinforcements

- Reinforcement is the dispersed phase, which normally bears the majority of stress

Reinforcements

- A reinforcement is the strong, stiff integral component which is incorporated into the matrix to achieve desired properties
- The term 'reinforcement' implies some property enhancement
- Different types
- Fibres or Filaments: continuous fibres, discontinuous fibres, whiskers
- Particulates reinforcements may be of any shape, ranging from irregular to spherical, plate-like or needle-like, nanoparticles

They have a low ductility

Matrix

- Made from Metal, polymer or ceramic
- Continuous phase
- Some ductility is desirable
- Functions
- Binds the reinforcements (fibers/particulates) together
- Mechanically supporting the reinforcements
- Load transfer to the reinforcements
- Protect the reinforcements from surface damage due to abrasion or chemical attacks
a High bonding strength between fiber and matrix is importi

Sิ why use compositas?

The greatest advantage of composite materials is strength and stiffness combined with lightness. By choosing an appropriate combination of reinforcement and matrix material, manufacturers can produce properties that exactly fit the requirements for a particular structure for a particular purpose.
Modern aviation, both miltary and civil, is a prime example. It would be much less efficient without composites. In fact, the demands made by that industry for materials that are both light and strong has been the main force driving the development of composites. It is common now to find wing and tail sections, propellers and rotor blades made from advanced composites, along with much of the internal structure and fittings. The airframes of some smaler aircraft are made entirely from composites, as are the wing, tail and body panels of large commercial aircraft.
In thinking about planes, it is worth remembering that composites are less likely than metals (such as aluminium) to break up completely under stress. A small crack in a piece of metal can spread very rapidly with very serious c

> 1 the case of aircraft). The fibres in a composite act to b

Dr. T. JAYACHANDRA PRASAD

- The right composites also stand up well to heat and corrosion. This makes them ideal for use in products that are exposed to extreme environments such as boats, chemical-handling equipment and spacecraft. In general, composite materials are very durable.
- Another advantage of composite materials is that they provide design flexibility. Composites can be moulded into complex shapes - a great asset when producing something like a surfooard or a boat hull.
- The downside of composites is usually the cost. Although manufacturing processes are often more efficient when composites are used, the raw materials are expensive. Composites will never totally replace traditional materials like steel, but in many cases they are just what we need. And no doubt new uses will be found as the technology evolves. We haven't yet seen all that composites can do.

CLASSIFICATION OF COMPOSITE MATERIALS

The composites are classified as mainly two constituents are matrix and a reinforcement

ORGANIC/POLYMER MATRIX COMPOSITE (PMCs)

Two main kinds of polymers are thermosets and thermoplastics

- Thermosets have qualities such as a well-bonded three dimensional molecular structure after curing. They decompose instead of melting on hardening.
- Thermoplastics have one or two dimensional molecular structure and they tend to at an elevated temperature and show exaggerated melting point. Another advantage is that the process of softening at elevated temperatures can reversed to regain its properties durino sooling.

Factors influence the performance processing method

Impact Resistance
Delamination Interphase
Fiber Orientation
Properties Of Raw Materials

Branches of composites a Hybrid Composites - Nanocomposites DBlended Composites aBlended Nanocomposites -Hybrid Fiber Reinforced Composites
 -Laminated Composites
 -Particulate Composites

Factors affecting the composites

DProperties Of Constituents
\square Shape Of The Fiber
\square Geometry Of The Fiber
\square Cross Sectional Area Of The Fiber
Manufacturing Method
\square Time Of Mixing
I Interface Between The Constituents
\square Processing Temp
\square Fiber distribution and orientation

Polymer matrix Composites (PMCs)

\square It is a multi phase material.
\square 'Poly' means many and 'mers' means units
\square polymer is a large molecule prepared by many repeated subunits.
\square Prepared by long and short continuous fibers bound together by polymer matrix.
\square These yield superior strength and stiffness.
Three types of polymers are used such as
\square Thermoplastics, (high processing temp.)
\square Thermosets, and (less processing temp.)
\square Elastomers (i.e. rubber).
\square Both synthetic and natural fibers can also be used as a reinforcements
\square Glass fibers, Kevlar fibers, carbon fibers, aramid fibers are some of the synthetic fibers.
ement is in discontinuous phase and matrix in in continuc dr. T.JAMACHAND̈RA PRASAD
-Majority of polymers are made by petroleum based products.
\square Polymers are made by chemical reaction by bonding of monomers by polymerization. Some polymers are made by organism.
\square Proteins have polypeptide molecules which are natural polymers made from various amino-acids monomer unit.

- Fiber length with less diameter imparts more mechanical strength rather than width.
\square these PMCs do not need any furnace to produce.
Temperature resistance of these polymers are up to $250^{\circ} \mathrm{C}$.
- Continuous fibers(glass, carbon, aramid, basalt or polymer fibers), chopped fibers(chopped CFs and chopped GFs), woven fabric fibers are fibers available commercially.
Degree off polymerization is depends on the how many no of units in the chain.
Thermoplastics- addition polymerization, thermo-sets- condensation polymerization

Nanofillers (also called nanocomposites)

\square Carbon nanotubes
\square Exfoliated clay platelets
\square Carbon black nanoparticles
Length is less than 0.5 microns (i.e. 500 nanometers)
Dramatic Improvements increased modulus
Strength, dimensional stability, thermal stability, electrical conductivity, flame retardency, chemical resistance, optical clarity, decreased gas water, oil permeability, surface appearance.

Classifications of polymers

\square Linear Polymers

- molecules are in the form of chains.
\square Thermoplastic Polymers
- molecules are linear or branched but not inter connected
\square Thermoset Polymers
- polymers are heavily cross linked to produce strong 3D network structures.
\square Elastomers
- lightly cross linked and its elastic deformation is $>200 \%$

Advantages of PMCs

Light weight

High strength and stiffness
High impact resistance
Good Corrosion resistance
Good abrasion and wear resistance
Disadvantages
Environmental degradation
Moisture absorption causes swelling
Thermal mismatch between the fiber and matrix. Due to'a" and causes debonding.
Low working temperature
Sensitive to radiation

Applications

Medical field
MRI scanners, X-ray couches, C-scanners, mammography plates, tables, surgical target tools, wheel chairs, prosthetics. etc

Transportation vehicles

Automotive:
belts, seats, hoses, sports cars (Bugatti uses CF to construct the body fıel tanks mirror and light housing, engine parts, body panels, wind -protective coatings for paintworks.

Aerospace Vehicles: tires, interiors,fuselages, rudders, windows,
Marine Ships: fishing boats, ships
Personal protective equipments:
fire fighters, while facing the deadly weapons
Others:
industrial equipments, foot wear, packaging, building, construction and civil Engg(impellers, blades, housing and covers), power tool housings, lawn mover hoods, mobile phones, Energy storage devices(batteries)

Metal Matrix Composites

-Conventional materials have some limitations in achieving the good combination of strength, stiffness, toughness, and low density.
\square So these shortcomings are overcome.
\square MMCs posses significantly improved properties
\square such as
Dhigh specific strength,
$\square h i g h$ specific modulus,
$\square h i g h$ damping capacity, and
$\square h i g h$ wear resistance.

METAL MATRIX COMPOSTTE (MMCs)

- Meal madix composites are High strengh, fracuure toughmess and ssiffiess are offerex by meal matrices than those offered by their polymer counterparts. They can wibssand devated empprature in corrosive environment than polymer composites.
* MMCs are widely used in engineering applications where the operating temperature lies in between $250^{\circ} \mathrm{C}$ to $750^{\circ} \mathrm{C}$.
* Matrix materiass: Steel, Aluminum, Titanium, Copper, WN

CERAMIC MATRIX COMPOSTIE (CMCs)

- Ceramics can be described as solid materials which exhibit very strong ionic bonding in general and in few cases covalent bonding. High melting points, good corosion resistance, stability at elevated temperatures and high compresive strength
> CMCs are widely used in engineering applications where the operating lemperature lies in between $800^{\circ} \mathrm{C}$ to $1650^{\circ} \mathrm{C}$

FUNCTIONS OF A MATRIX

- Holds the fibers together.
- Protects the fibers from environment.
- Distributes the loads evenly between fibers so that all fibers are subjected to the same amount of strain.
- Enhances transverse properties of a laminate.
- Improves impact and fracture resistance of a component.
- Carry inter laminar shear.

DESIRED PROPERTIES OF A MATRIX

- Reduced moisture absorption.
- Low shrinkage.
- Low coefficient of thermal expansion.
- Strength at elevated temperature (depending on application).
- Low temperature capability (depending on application).

CLASSIFICATION OF COMPOSITE MATERIALS

FIBER REINFORCED COMPOSITES

Fibers are the important class of reinforcements, as they satisfy the desired conditions and transfer strength to the matrix constituent influencing and enhancing their properties as desired.

Randem fiber ishert ifber) winfoned camperilise

Dr. T. JAYACHANDRA PRASAD
MEPTD.FIEFEIE MNAFEN, MSTEMIEEE

LAMINAR COMPOSITES

Laminar composites are found in as many combinations as the number of materials. They can be described as materials comprising of layers of materials bonded together. These may be of several layers of two or more metal materials occurring alternately or in a determined order more than once, and in as many numbers as required for a specific purpose.

Laminar Composite

Sandwich 1

PARTICULATE REINFORCED COMPOSITES

Microstructures of metal and ceramics composites, which show particles of one phase strewn in the other, are known as particle reinforced composites. Square, triangular and round shapes of reinforcement are known, but the dimensions of all their sides are observed to be more or less equal. The size and volume concentration of the dispersed distinguishes it from dispersion hardened materials.
 Nogutment Mothnicel Enineorings

Particulate reinforced composites

Dr. T. JAYACHANDRA PRASAD

Particulate composites

\square These provide reinforcement,
Dimproves conductivity, improves operating temp.,
\square Doxidation resistance,
\square cost to the matrix
\square Combination of matrix and reinforcement can provide us very special material
Nanoparticles saves material and also improves strength.
\square Usually isotropic because particles are added randomly
\square Size of the particles is <0.25 microns
\square Ex: chopped fibers, platelets, hollow spheres, nan-oclay, carbon nanotubes,
Traditional manufacturing methods such as injection moulding reduces the cost.
\square Al-alloys with sic particle dispersed are widely used for piston and brake applications.
\square carbon or ceramic particulates used for brakes
\square Applications:
cutting tools
automotive parts, brakes
aComputer housings
\square cell phone casings
office furniture
\square helmets

FLAKE COMPOSITES

Flakes are often used in place of fibers as can be densely packed. Metal flakes that are in close contact with each other in polymer matrices can conduct electricity or heat, while mica flakes and glass can resist both. Flakes are not expensive to produce and usually cost less than fibers.

Flake composites

FILLED COMPOSITES

Fillers may be the main ingredient or an additional one in a composite. The filler particles may be irregular structures, or have precise geometrical shapes like polyhedrons, short fibers or spheres.

Filled composites
Fillers may be the main ingredient or an additional one in a composite. The filler particles may be irregular stı fry

MICROSPHERES

Microspheres are considered to be some of the most useful fillers. Their specific gravity, stable particle size, strength and controlled density to modify products without compromising on profitability or physical properties are it's their most-sought after assets.

Solid Microspheres have relatively low density, and therefore, influence the commercial value and weight of the finished product. Studies have indicated that their inherent strength is carried over to the finished molded part of which they form a constituent.

Hollow microspheres are essentially silicate based, made at controlled specific gravity. They are larger than solid glass spheres used in polymers and commercially supplied in a wider range of particle sizes.

FACTORS AFFECTING PROPERTIES OF COMPOSITES

- The type, distribution, size, shape, orientation and arrangement of the reinforcement will affect the properties of the composites material and its anisotropy

Distribution

Concentration

Orientation

Size

Dr. T. JAYACHANDRA PRASAD

FAILURE MODES OF COMPOSITE MATERIALS

- Delamination
- Matrix tensile failure
- Matrix compression failure
- Fiber tensile failure
- Fiber compression failure

> INTRODUCTIONS

$>$ Examples of naturally found composites.
$>$ Examples include wood, where the lignin matrix is reinforced with cellulose fibers and bones in which the bone-salt plates made of calcium and phosphate ions reinforce soft collagen.

> What are advanced composites?

$>$ Advanced composites are composite materials that are traditionally used in the aerospace industries. These composites have high performance reinforcements of a thin diameter in a matrix material such as epoxy and aluminum. Examples are graphite/epoxy, Kevlar $® \dagger /$ epoxy, and boron/ aluminum composites. These materials have now found applications in commercial industries as well.

> CLASSIFICATION

> How are composites classified?
> Composites are classified by the geometry of the reinforcement

- Particulate
- Flake
- Fibers
> Composites are classified by the type of matrix
- Polymer
- Metal
- Ceramic
- Carbon.

FIGURE 1.9

Schematic of manufacturing glass fibers and available glass forms. (From Bishop, W., in Advanced Composites, Partridge, 1.K., Ed., Kluwer Academic Publishers, London, 1990, Figure 4, P. 177. Reproduced with kind permission of Springer.)

Dr. T. JAYACHANDRA PRASAD
ME.Ph.D. FIEFFETE MNAFEN, MSTEMIEEE
PRINCIPAL
R G M College of Engg. \& Tech., (Autonomous)
NANDYAL-518 501, Kurnool (Dt), A.P.

UNIDIRECTIONAL GRAPHITE

PLAIN WEAVE E-GLASS

PLAIN WEAVE GRAPHITE

PLAIN WEAVE NYLON

KEVLAR' PLAIN WEAVE

CHOPPED MAT

S-2 GLASS* WOVEN ROVINGS

SATIN WEAVE E-GLASS

Dr. T. JAYACHANDRA PRASAD
UEPAD. FIEF FETENNNFEN MSTEMIEEE PRINCIPAL

FIGURE 1.11

Stages of manufacturing a carbon fiber from PAN-based precursors.

FIGURE 1.12
Comparison of performance of several common matrices used in polymer matrix composites. (Graphic courtesy of M.C. Gill Corporation, http://www.mcgillcorp.com.)
$>$ Polymers are classified as thermosets and thermoplastics. What is the difference between the two? Give some examples of both.
> Thermoset polymers are insoluble and infusible after cure because the chains are rigidly joined with strong covalent bonds; thermoplastics are formable at high temperatures and pressure because the bonds are weak and of the van der Waals type. Typical examples of thermoset include epoxies, polyesters, phenolics, and polyamide; typical examples of thermoplastics include polyethylene, polystyrene, polyether-ether-ketone (PEEK), and poly phenylene sulfide (PPS). The differences between thermosets and thermoplastics are given in the following table

Thermoplastics

Thermoset
Soften on heating and pressure, and thus easy to repair
High strains to failure
Indefinite shelf life
Can be reprocessed
Not tacky and easy to handle
Short cure cycles
Higher fabrication temperature and viscosities have
made it difficult to process
Excellent solvent resistance

> Decompose on heating
> Low strains to failure
> Definite shelf life
> Cannot be reprocessed
> Tacky
> Long cure cycles
> Lower fabrication temperature

Fair solvent resistance

$>$ What are prepregs?

> Prepregs are a ready-made tape composed of fibers in a polymer matrix (Figure 1.13). They are available in standard widths from 3 to 50 in . (76 to 1270 mm). Depending on whether the polymer matrix is thermoset or thermoplastic, the tape is stored in a refrigerator or at room temperature, respectively. One can lay these tapes manually or mechanically at various orientations to make a composite structure. Vacuum bagging and curing under high pressures and temperatures may follow R.GACollege of Engg. ${ }^{2}$ Tech., (Autonomsus)
NANDYAL 518 Sbi, Kurnool (Dist), A.P

FIGURE 1.13
Boron/epoxy prepreg tape. (Photo courtesy of Specialty Materials, Inc., http://www.specmaterials.com.)
$>$ Figure 1.14 shows the schematic of how a prepreg is made. A row of fibers is passed through a resin bath. The resin-impregnated fibers are then heated to advance the curing reaction from A-stage to the B-stage. A release film is now wound over a take-up roll and backed with a release film. The release film keeps the prepregs from sticking to each other during storage

FIGURE 1.14
Schematic of prepreg manufacturing. (Reprinted from Mallick, P.K., Fiber-Reinforced Composit erials, Manufacturing, and Design, Marcel Dekker, Inc., New York, Chap. 2, 1988, p. urtesy of CRC Press, Boca Raton, FL.)

EICIIDE
1.31
ic of slurry infiltration process for ceramic matrix composites. (From Chawla, K.K., Dr. T. JAYACHANDRA PRASAD

Processing carbon/carbon composites

FIGURE 1.33
Schematic of processing carbon-carbon composites. (Reprinted with permission from Klein, A.J., Adv. Mater. Processes, 64-68, November 1986, ASM International.)
$>$ ally a laminate structure made of various laminas stacked on each other. Knowing the macromechanics of a single lamina, one develops the macromechanics of a laminate. Stiffness, strengths, and thermal and moisture expansion coefficients can be found for the whole laminate.
$>$ Laminate failure is based on stresses and application of failure theories to each ply. This knowledge of analysis of composites can then eventually form the basis for the mechanical design of structures made of composites.

FIGURE 1.35
Schematic of analysis of laminated composites.

Carbon-Carbon matrix composite (CCMCs)

- Carbon-Carbon composite is a carbon fiber reinforced carbon matrix composite.
- It is a two-phase composite material and as the name implies, both the matrix and reinforcement fiber are carbon.
- Carbon-Carbon can be tailor-made to give a wide variety of products by controlling the choice of fiber-type, fiber presentation and the matrix.
Compared to other materials such as graphite, ceramics, metal, and plastic, it is lightweight and strong and can withstand temperatures over $2000^{\circ} \mathrm{C}$ without any loss in performance.

CARBON/CARBON MATRIX COMPOSITE

> C / Cs are developed specifically for parts that must operate in extreme temperature ranges. Composed of a carbon matrix reinforced with carbon yarn fabric, 3-D woven fabric, 3-D braiding, etc.
$>\mathrm{C} / \mathrm{C}$ composites meet applications ranging from rockets to aerospace because of their ability to maintain and even increase their structural properties at extreme temperatures.

Advantages:

- Extremely high temperature resistance $\left(1930^{\circ} \mathrm{C}-2760^{\circ} \mathrm{C}\right)$.
- Strength actually increases at higher temperatures (up to $1930^{\circ} \mathrm{C}$).
- High strength and stiffness.
- Good resistance to thermal shock.

Carbon - Carbon Composites (CCC)

> Carbon Carbon Composites are those special composites in which both the reinforcing fibers and the matrix material are both pure carbon.
> Carbon-Carbon Composites are the woven mesh of Carbon-fibers.
> Carbon-Carbon Composites are used for their high strength and modulus of rigidity.
> Carbon-Carbon Composites are light weight material which can withstand temperatures up to $3000^{\circ} \mathrm{C}$.
> Carbon-Carbon Composites' structure can be tailored to meet requirements.

Properties Of C-C Composites (CCC)

> Excellent Thermal Shock Resistance(Over 2000 ${ }^{\circ} \mathrm{C}$)
> Low Coefficient of Thermal Expansion
> High Modulus of Elasticity (200 GPa)
> High Thermal Conductivity ($100 \mathrm{~W} / \mathrm{m}^{*} \mathrm{~K}$)
> Low Density ($1830 \mathrm{Kg} / \mathrm{m}^{\wedge} 3$)
> High Strength
> Low Coefficient of Friction (in Fiber direction)
> Thermal Resistance in non-oxidizing atmosphere

- High Abrasion Resistance
> High Electrical Conductivity
> Non-Brittle Failure

Properties Of C-C Composites (CCC)

CHEMCARB composites retain their physical pro ${ }^{\text {Dr. T. JAAMACHANDRA PRASAD }}$ even at temperatures exceeding $3,700^{\circ} \mathrm{F}$.

UE.Ph.D.FFIEFFETE MNAFEN, MISTEMIEEE
PRINCIPAL
R G M College of Engg. \& Tech., (Autonomous)

Properties Of C-C Composites (CCC)

KN or its density, CHEMCARB composites offer outstandDr K. THIRUPATHI REDDY ng tensile strength, exceeding that of many metals.

Dr. T. JAYACHANDRA PRASAD
ME,Ph.D.FFIEFETE MNAFEN, MSTEMIEEE PRINCIPAL

Compared to Metals

Compared to Graphite

Compared to Ceramics

High heat resistance
Low thermal expansion
Lightweight ($1 / 5$ of metal)

Does not bond

Excellent resistance to corrosion and radiation

High strength and rigidity
High resistance to fracture

High resistance to fracture
High thermal shock resistance

Precision machinable

High heat resistance
Excellent resistance to corrosion and mariatiom
High wear resistance

A Carbon-Carbon composite is a carbon fiber reinforced carbon matrix composite. It is a two-phase composite material and as the name implies, both the matrix and reinforcement fiber are carbon. Carbon-Carbon can be tailor-made to give a wide variety of products by controlling the choice of fiber-type, fiber presentation and the matrix. Carbon-Carbon is primarily used for extreme high temperatures and friction applications.

Carbon-Carbon combines the desirable properties of the two constituent carbon material. The Carbon matrix (Heat resistance, Chemical resistance, Low thermal expansion coefficient, High-thermal conductivity, Low electric resistance, Low specific gravity) and the Carbon Fiber (High-strength, High elastic modulus) are molded together to form a better combination material. The reinforcing fiber is typically either a continuous (long--iber) or discontinuous (short-fiber) carbon fiber type.

Processing Of Carbon Fiber

$>$ About 90% of the carbon fibers produced are made from polyacrylonitrile (PAN) process.
$>$ The remaining 10% are made from rayon or petroleum pitch.

Processing Of Carbon Fiber

PAN-PROSSES

> In this method carbon fibers are produced by conversion of polyacrylonitrile (PAN) precursor through the following stages; Stretching filaments from polyacrylonitrile precursor and their thermal oxidation at $200^{\circ} \mathrm{C}$.
> The filaments are held in tension. Carbonization in Nitrogen atmosphere at a temperature about $1200^{\circ} \mathrm{C}$ for several hours.
$>$ During this stage non-carbon elements ($\mathrm{O}, \mathrm{N}, \mathrm{H}$) volatifize resuling in enrichment of the fiknewith carbon. Graphitization at about $2500^{\circ} \mathrm{C}$.

Fabrication Of C-C Composite

> Liquid Phase Infiltration

Pressure die infiltration

>Chemical Vapor Deposition

Liquid Phase Infiltration

> Preparation of C/C fiber pre-form of desired shape and structure.
> Liquid pre-cursor : Petroleum pitch/ Phenolic resin/ Coal tar.
$>$ Pyrolysis (Chemical deposition by heat in absence of 02 .
> It is processed at $540-1000^{\circ} \mathrm{C}$ under high pressure.
> Pyrolysis cycle is repeated 3 to 10 times for desired density.
> Heat Treatment converts amorphous C into crystalline C.
$>$ Temperature range of treatment : $1500-3000^{\circ} \mathrm{C}$.
$>$ Heat treatment increases Modulus of Elasticity ar

Pressure die infiltration

Flow Chart Of Manufacturing Process

Carbon fibre preform structure

 Department of Mechanical Engineering PG. GCollegc of Engg. LTech, (Autonomeus)
NANDYAL 518 S , Kurnoof (Dist), A.P

Carbon-Carbon composite

Dr. T. JAYACHANDRA PRASAD
M.E,Ph.D.FIE FIETE MNAFEN, MSTE, MIEEE PRINCIPAL
R G M College of Engg. \& Tech., (Autonomous)
NANDYAL-518501, Kurnool (Dt), A.P.

Chemical Vapor Deposition

> Preparation of C/C fiber pre-form of desired shape and structure
> Densification of the composite by CVD technique
> Infiltration from pressurized hydrocarbon gases
(Methane /Propane)at 990-1210 ${ }^{\circ} \mathrm{C}$
$>$ Gas is pyrolyzed from deposition on fibre surface
P Process duration depends on thickness of pre-form
$>$ Heat treatment increases Modulus of Elasticity and Strength
> Thisnrocess gives higher strengthrand modutus of

Chemical Vapor Deposition

oven
 $720^{\circ} \mathrm{C}$

Limitation of CVD

Hydrocarbon Gases Infiltrating into interfilament surfaces and cracks, sometimes these gases deposite on outer cracks and leave lot of pores.

Reinfiltration and densification required.

Month long process(for specific applications).

Carbon - Carbon Composites (CCC)

Advantages

$>$ Light Weight $\left(1.6-2.0 \mathrm{~g} / \mathrm{cm}^{\wedge} 3\right)$
$>$ High Strength at High Temperature (up to $2000^{\circ} \mathrm{C}$) in non-oxidizing atm.
> Low Coefficient of thermal expansion.
> High thermal conductivity (>Cu \& Ag).
> High thermal shock resistance.

Carbon - Carbon Composites (CCC)

Disadvantages

> High fabrication cost.
> Porosity.
> Poor oxidation resistance - formation of gaseous oxides
in oxygen atm.
> Poor inter-laminar properties.

Application Of C-C Composite

> High Performance Braking System
> Refractory Material
> Hot-Pressed Dies(brake pads)
> Turbo-Jet Engine Components
$>$ Heating Elements
> Missile Nose-Tips
$>$ Rocket Motor Throats
> Leading Edges(Space Shuttle, Agni missile)
> Heat Shields
> X-Ray Targets
> Aircraft Brakes
> Reentry vehicles
> Biomedical implants
$>$ Engine pistons
ows. ronic heat sinks

Uses of Carbon-Carbon Composites

$>$ Aircraft, F-1 racing cars and train brakes
> Space shuttle nose tip and leading edges
> Rocket nozzles and tips

http: //www.fibermate

Matrix and reinforcements in composites

PMCs

Matrix materials

Thermoplastics: Polyethylene, polystyrene, polycarbonate, polypropylene, nylon, Acryl butadiene styrene (ABS), Acetals etc
Thermo-sets: epoxy, polyester, polyurethanes, silicones, phenolics etc
Reinforcements: Glass fibers, carbon fiber, Kevlar fibers, aramid fibers are some synthetic materials.
Coir fibers, jute fibers, sisal fibers, banana fibers, bamboo fibers are some natural fibers etc

Elastomers:

matrix: rubber materials
Reinforcements: metal wires
MMCs
Matrix materials: Aluminum, magnesium, Titanium, cobalt, nickel etc
Reinforcements: Alumina, boron carbide, titanium carbide, boron etc
CMCs
Matrix materials: alumina(oxide form), SiC (non oxide form)
Reinforcements: SiC (whiskers), Titanium Boride (TiB_{2}) Aluminum

Dr K. THIRUPATHI REDDY

Applications of composites

Aerospace

gliders
helicopter blades
transmission shafts
elevators
spoilers(aerodynamic device)
rocket boosters
nozzles
antenna covers
fuselages
Doors/sears
food trays
rudders (tail)

Automobiles

leaf springs
car seats \& bumpers
body components
Chassis
engine components
Fuel tanks
tire guards
window frames
front grills
Engine bonnet
mud guards

Marine

fishing boats
life boats
anti marine ships
rescue crafts
hover craft
yachts
naval ships
hulls
Decks
bulk heads
masts propulsion shafts
lamp heads \& housings
cabins
Instrument panels
cabins
light housings
radiator fans

Applications of composites

Sport goods

fishing rods
hockey sticks
arrows
javelins
base ball bats
helmets
exercise
equipment
shoe soles and
heels
golf rackets
pole vault poles

Elec./

Electronics

Switches
Wires
Optical fibers circuits
Mother boards
sinks
semiconductors

Industrial

Reactors
boiling tubs
tanks
Distillation columns house furniture cooling towers

Construction

window frames bath room panels cladding panels roofing panels
pipes and ducts swimming pools diving boards door panels over head tanks POP ceiling pipe lines flooring

UNIT-II

Types of fibers

Mineral fibers

Fiber characteristics

- extremely thin and flexible
- one dimension (l>d)
- high modulus and strength
- better default properties
- lateral dimn. Should be in microns
- fiber should be stronger than matrix
- High aspect ration

SILICA FIBER

Introduction

1. Silica fibers are fibers made of sodium silicate (water glass)
2. They can be made such that they are substantially free from non- alkali metal compounds.
3. They are used in heat protection (including asbestos substitution) and in packings and compensators.
4. silica fiber used as a reinforcing the material and yet wet webs and filter linings.
5. Silica fibers are used as a Optical Fibers Optical fiber is used as a medium for telecommunication and computer networking because it is flexible and can be bundled as cables. It is especially advantageous for long-distance communications, because infrared light propagates through the fiber with much lower attenuation compared to electricity in electrical cables.
6. strength can be further improved by providing the polymer jac ${ }^{1-\cdots-}$

Characteristics

- Superb transparency
- good purity, $\rho=2.61 \mathrm{~g} / \mathrm{cc}$
- heat resistance as high as $1700^{\circ} \mathrm{C}$
- Excellent chemical inertness
- A silica fiber has an amazingly high mechanical strength against pulling and even bending, provided that the fiber is not too thick.
- Silica glass can be doped with various materials in order to improve various properties.
- Silica has a high damage threshold.

SILICA FIBER

Applications

Applications in rockets, spacecrafts, missiles, heat-fire resistant equipments.
Pressure control devices, expansion joints to reduce heat, counterbalancing the destability, friction lining materials

Glass fibers

- glass fibre is material consisting of numerous extremely fin fibers of glass.
- it is cheaper and significantly less brittle material.
- used as a reinforcing material in polymer matrix composites

Types of glass fibers

- E-glass fiber: E stands for electrical application, most common type of glass fiber (alumino- borosilicate glass with less than 1% alkali oxide), mainly usd for glass reinforced plastics
- D-glass fiber: D stands for dielectric suitable for low dielectric constants. (borosilicate glass with less th)
- S-glass fiber: S stands for strength(tensile)(alumino silicate glass without CaO but with high MgO content)
- C-glass fiber: C stands for chemical resistance, used for insulation purpose.(alkali lime glass with high boron oxide content)
- E-CR glass fiber: E-CR stands for electrical and chemical resistance.(It has alumino lime silicate with less than 1% alakli oxide.
- A-glass fiber: A stands for alkali resistance.

characteristics

- resistance to attack of most of the chemicals.
- it has comparable mechanical properties with carbon fiber.
- it is a durable and light weight material

Properties

- High tensile strength
- High dimensional stability
- High heat resistance.
- Good thermal conductivity
- Great fire resistance.
- Good chemical resistance.
- Outstanding electrical properties
- Dielectric permeability
- compatible with matrix materials
- great durability
- non-totting
- highly economical

Disadvantages

- inhale causes lung disease

Applications

- rocket bodies
- exhaust nozzles
- heat shields
- wall panels
- fishing rods
- insulators
- rinforcements

Boron fibre

- Introduction
- It is also called hybrid boron fiber.
- First introduced in the year of 1959.
- Chemical vapor deposition (CVD) deposition process is used to produce these fibers.
- in CVD process material is deposited on a thin filament.
- It is fine, dense deposited material which determines the strength and modulus of fiber.
- in CVD process boron tri-chlorides are mixed with the hydrogen.

Boron fiber

- Tensile strength (3600MPa)
- Tensile modulus (400GPa)
- compressive strength(6900MPa)
- Fracture strength (17GPa)
- $\alpha=4.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- $\rho=2.57 \mathrm{~g} / \mathrm{cm}^{3}$
- $\Phi=142 \mu \mathrm{~m}$

Boron fiber

- ceramic monofilaments used in complex helical structures.
- fiber dia. Ranges from 33-400 ${ }^{\mu m}$
- Thermal expansion would mismatch boron and tungsten.
- Boron is a brittle material hence for large diameters results less flexibility
- If boron is coated on SiC fiber and $\mathrm{B}_{4} \mathrm{C}$ fiber ,then it protects the surface.
- it exibits linear axial stress strain relationship upto650 ${ }^{\circ} \mathrm{C}$
- it strong in both tension and compression

Applications

- Bicycle frames
- sports goods
- fishing rods
- space shuttle
- Air craft repairs

Kevlar fiber

- It is widely used fiber in combination with GF/CF
- it is formed by hydrogen bonds between the polymer chains.
- looks like a long twisted coil.
- yellowish color.
- Strong and heat resistant
- strength is intact at cryogenic temp. $-196^{\circ} \mathrm{C}$
- At higher temps. Strength is reduced(Ex: at $160^{\circ} \mathrm{C} 10 \%$ TS is reduced and also $260^{\circ} \mathrm{C} 50 \%$ TS is reduced.
- High shear strength $, \rho=1.44 \mathrm{~g} / \mathrm{cc}, \mathrm{TS}=3600 \mathrm{MPa}$
- production is similar to nylon fiber

Applications

- bullet proof vests
- bicycle tires
- racing sails
- personal armors
- Helicopter rotor blades
- combat helmets
- racing car bodies
- field hockey bats

Boron Carbide fiber $\left(B_{4} C\right)$

- color is dark grey
- extremely hard ceramic material
- boron-carbon are made with covalent bonds
- Vickers hardness is greater than 30GPa
- it is 3ed hardest material after diamond and boron nitride.
- $P=2.52 \mathrm{~g} / \mathrm{cc}, \mathrm{E}=460 \mathrm{GPa}$, Hardness=38GPa, fracture toughness $=3.5 \mathrm{MPa} / \mathrm{sq} . \mathrm{m}$
- high performance abrasive material
- flexural strength is more than 400 Mpa
- $\mathrm{B}_{2} \mathrm{O}_{3}+7 \mathrm{C} \longrightarrow \mathrm{B}_{4} \mathrm{C}+6 \mathrm{CO}$
- $\mathrm{B}_{2} \mathrm{O}_{3}$ boron trichloride

drawbacks

- low thermal conductivity
- susceptible to thermal shock failure.
- extremely brittle

applications

- Nuclear reactors
- MMCs
- solid fuel-Ramjets
- brake lining materials
- armor plating
- cutting tools and dies
- abrasives
- nozzles for slurry pumping

Carbon fiber

\square carbon fibers are bonded together to form a long chain
\square produced from Poly-acrylonitrile (PAN) or pitch.
$\square 5 X$ stronger and $2 X$ stiffer than steel
\square 2.33X lesser in weight

Advantages

High tensile strength
\square high extension at break
\square High modulus
\square good electrical conductivity
\square Low α
\square low ρ
\square high wear resistance
\square long working life
\square compressive strength is greater than all fibers
\square properties are better than other metals
\square Insensitive to temperature
\square densitv is lesser than steel

DISADVANTAGES

\square Costly
it causes lung cancer

APPLICATIONS

$>$ Rackets
$>$ golf sticks
$>$ Automotive body parts
$>$ mobile cases
$>$ recharge batteries
$>$ fuel cells
\Rightarrow Portable power banks
$>$ music instruments

Silicon Carbide Fiber

\square SiC is a simple compound with carbon atoms attached to silicon through triple bond, leaving both atoms with +ve and -ve charge.
'Si' is metalloid and the 'carbon' is non-metal and properties formed between the metals and nonmetals.
It is used as a reinforcing/abrasive/ ceramics material
Ithe grains of SiC can be bonded together by sintering to form very hard material.
it is a ceramic material widely used in applications require high endurance.
\square SiC has diamond like tetrahedral crystal structure formed by covalent bonds
\square Just like carbon does in diamond
It exists in crystalline form.
$\square \mathrm{SiO}_{2}+3 \mathrm{C} \longrightarrow \mathrm{SiC}+2 \mathrm{CO}$ at temp $1600^{\circ} \mathrm{C}-2500^{\circ} \mathrm{C}$

Properties of SiC

- Low density
- high strength and stiffness
- Lowa
- High thermal conductivity
- High hardness
- High elastic modulus
- High thermal shock resistance
- high chemical inertness
- It irritates eyes,skin

Applications of SiC

- Wear resistance parts for pumps and rockets engines
- LEDs and semiconductors
- car clutches
- car brakes
- refractory lining
- gas flow liners
- bearings
- turbine parts
- heat exchangers
- Grinding wheels
- Jewelry

UNIT-III

PROCESSING OF POLYMER MATRIX COMPOSITES (PMCS)

BY
Dr.M.ASHOK KUMAR
PROFESSOR OF MECHANICAL ENGINEERING
RGM COLLEGE OF ENGG. \& TECHNOLOGY,NANDYAL-518501,AP

TYPES OF MANUFACTURING PROCESSES

- HAND LAY UP
- SPRAY LAYUP
- VACUUM BAGGING
- PULTRUSION
- RESIN TRANSFER MOULDING
- FILAMENT WINDING
- AUTOCLAVE MOULDING

HANDLAY UP PROCCESS

- Composites are made manually.
- It is a slow process and labor consuming
- The largest number of reinforced plastics composite products are produced by the hand lay-up process.
- Mat type or woven/ fabric fiber type fibers are used.
- Mould is prepared based on the final shape of the product.
- Catalyzed resin is used as a matrix which is made up of resin and catalyst.
- Catalyzed resin is prepared based on the stoichiometric ratio s of both.
- Mould is open.
- We get one side only smooth surface.
- Brush and rollers are used in this process.
- Curing is done at room temp.
- post curing parts are removed after keeping some time in the finll to ensure mould releasing agent to melt.

Fabrication steps

- Mould is coated with mould releasing agent for easy removal of mould after curing.
- Then mould is coated with gel coat to give coloring purpose.
- Fiber fabrics are cut into desired shapes and then stacked into the mould all over.
- pour the some amount of catalyzed resin all over the mould and further we have to spread it all over the mould with brush and roller to ensure wetting.
- We have to add another layer of fiber to be spread all over the mould and then poured some more amount of fiber into the mould.
- We have to put fiber layer plus resin layer alternatively until we get desired thickness.
- we have to finish this process before resin starts gelling.

Advantages

> Widely used.
$>$ Low tooling cost.
> Custom shape.
> Larger and complex items can be produced.

Disadvantages

> Labour intensive.
> Low-volume process.
$>$ Styrene emission.
> Quality control is entirely dependent on the skill of labourers.
> Only 30\% of the fiber can be stacked.

- Emission due to open
mould
> air entrapment makes air bubbles formation.

SPRAY LAY UP PROCESS

- Continuous strand glass roving and initiated resin are then fed through a chopper gun, which deposits the resin-saturated "chop" on the mold.
- This is done by spray gun.
- mould is open mould releasing agent and gel coat is applied before streaming the fiber and resin.
- Here chopped fibers are used where as In hand lay up mat are used as a fibers
- Spray gun injects chopped fiber catalyzed resin on to the mould surface with HP jet.
- Fibers are cut into 25 to 50 mm length with the help of adjustable blade in the gun.
- this process is good for automation for high rate of production.
- mechanical properties are moderate due to the not using of continuous fibers.

Fabrication steps

1. MRA and gel coats are applied.
2. With the help of the gun chopped fibers and resin are injected on to the mould surface directly.
3. chopped fibers are dressed in proper shape and placed all over the mould to impart desired thickness. This has to be done manually.
4. to reduce defects resin is spread uniformly to ensure bonding between the fiber and matrix.
5. We have to do continuously until we get completed the entire mould with desired thickness.
6. then allow some time for curing. We should remove the casting from the mould.

Advantages and disadvantages of spray lay up

- Tooling cost is low.
- Semiskilled workers are easily trained.
- Design Flexibility.
- Molded-in inserts and structural changes are possible.
- Sandwich constructions are possible.
- Large and Complex items can be produced.
- Minimum equipment investment is necessary.
- The startup lead time and the cost are minimal.
- Labor Intensive.
- Low volume process.
- Longer curing times.
- Production uniformity is difficult.
- Waste factor is high.

applications

boats, tanks, transportation components, and tub/shower units in a large variety of shapes and sizes.

Dr. T. JAYACHANDRA PRASAD

What is vacuum bagging?

- Vacuum bagging (or vacuum bag laminating) is a clamping method that uses atmospheric pressure to hold the adhesive or resin-coated components of a lamination in place until the adhesive cures.
- When discussing composites, "resin" generally refers to the resin system-mixed or cured resin.)
- Vacuum bag molding
- Also known as vacuum bagging.
- Open mold techniques for thermoset composites.
- Hand lay-up: The application of reinforcement along with a polyester or epoxy resin by hand.
- Vacuum bagging: The use of a vacuum bag . WW. en pressure over the composite to conso.

vacuum bagging process

vacuum bagging process utilizes a flexible and transparent film (ie: fabric, nylon, rubberized sheet or plastic) in order to fully enclose and compacting the wet laminate by using atmospheric pressure. this process is also called vacuum bagging.
It uses a vacuum and pump to extract the air from inside the vacuum bag and compress the part under atmospheric pressure in order for the compacting and hardening process to take place.
vacuum bagging is an upgrade of the wet layup process and is widely spread in the composite industry because of its clear benefits over this method.
you will most often see the use of fiberglass, 그Nun s:h~. and resin materials being Dr к. тнirupathiredoy)gether using the vacuum bag

Benefits

Finished product will yield a better strength rating and be lighter.
Parts that are stronger yet lighter the ratio of glass to resin which is better accomplished. materials for basic parts are inexpensive and easily obtained.

Disadvantages

Applied vacuum pressure then removes excess resin; however the amount removed will depend on multiple different and critical variables that may be hard to control.
Removing excess resin, which was first brought in, is a clear waste of money and resources. In larger projects, it is also necessary to apply the vacuum bagging process a couple of times since the resin pot-life is the limiting factor.
The amount of resin that is removed from part to part can also vary substantially depending on the timing of the vacuum pressure being applied.
The process of bagging can become rushed opening up the opportunity for error if a leak in the vacuum seal occurs and cannot be immediately located.

Unfortunately with bagging, the fiber to volume ratio cannot be successfully calculated as it can with other processes, and over-bleeding or dry laminates can be a large concern.
Bigger and more complex lay-ups also require additional helpers, increasing labor needs and support.
Another imminent disadvantage with hand-lay-up and bagging is that the process must be completed once started, with no option to pause or take a step back.
There is a clear time and forgiveness disadvantage in wetting-out and squeegee processes with a race against the resin pot-life and getting all of the materials in place.

Filament Winding

Filament Winding method involves a continuous filament of reinforcing material wound onto a rotating mandrel in layers at different layers. If a liquid thermosetting resin is applied on the filament prior to winding the, process is called Wet Filament Winding. If the resin is sprayed onto the mandrel with wound filament, the process is called Dry Filament Winding.
Besides conventional curing of molded parts at room temperature, Autoclave curing may be used.

Dr K. THIRUPATHI REDDY

Filament Winding

- Filament Winding Process

- For Round or Cylindrical parts
- A tape of resin impregnated fibers is wrapped over a rotating mandrel to form a part.
- These windings can be helical or hooped.
- There are also processes that use dry fibres with resin application later, or prepregs are used.
- Parts vary in size from $1^{\prime \prime}$ to 20^{\prime}
- Winding direction
- Hoop/helical layers
- Layers of different material
- High strengths are possible due to winding designs in various direction
- Winding speeds are typically 100 $\mathrm{m} / \mathrm{min}$ and typical winding tensions are 0.1 to 0.5 kg .

Dr K. THIRUPATHI REDDY

Filament Winding

- Demolding
- To remove the mandrel, the ends of the parts are cut off when appropriate, or a collapsible mandrel (e.g., low melt temperature alloys) is used.
- Curing in done in an Autoclave for thermoset resins (polyester, epoxy, phenolic, silicone) and some thermoplastics (PEEK)
- Fibers are E-glass, S-glass, carbon fiber and aramids (toughness and lightweight) .
- Inflatable mandrels can also be used to produce parts that are designed for high pressure applications, or parts that need a liner, and they can be easily removed.
- Advantages
- Good for wide variety of part sizes
- Parts can be made with strength in several different directions
- Very low scrap rate
- Non-cyclindrical parts can be formed after winding
- Flexible mandrels can be left in as tank liners
- Reinforcement panels, and fittings can be inserted during winding
- Due to high hoop stress, parts with high pressure ratings can be made
- Disadvantages
- Viscosity and pot life of resin must be carefully chosen
- NC programming can be difficult
- Some shapes can't be made with filament winding
- Factors such as filament tension must be controlled

Filament Winding

The filament winding process has the following advantages:

1. The process may be automated and provides high production rates.
2. Highest-strength products are obtained because of fiber placement control.
3. There is versatility of sizes.
4. Control of strength in different directions possible.

The following are limitations of filament winding:

1. Winding reverse curvatures is difficult.
2. Winding at low angles (parallel to rotational axis) is difficult.
3. Complex (double-curvature) shapes are difficult to obtain.
oxins. is poor external surface.

Filament winding - applications

- pressure vessels, storage tanks and pipes
- rocket motors, launch tubes
- Light Anti-armour Weapon (LAW)
- Hunting Engineering made a nesting pair in 4 minutes
with ~ 20 mandrels circulated through the machine and a continuous curing oven.
- drive shafts
- Entec "the world's largest five-axis filament winding machine" for wind turbine blades
- length 45.7 m , diameter 8.2 m , weight > 36 tonnes.

Filament winding

Figure 1.5 The wel process.

FILAMENT WINDING CHARACTERISTICS

- The cost is about half that of tape laying
- Productivity is high ($50 \mathrm{~kg} / \mathrm{h}$).
- Applications include: fabrication of composite pipes, tanks, and pressure vessels. Carbon fiber reinforced rocket motor cases used for Space Shuttle and other rockets are made this way.

Filament winding - winding patterns

- hoop $\left(90^{\circ}\right)$ - girth or circumferential winding
- angle is normally just below 90° degrees
- each complete rotation of the mandrel shifts the fibre band to lie alongside the previous band.
- helical
- complete fibre coverage without the band having to lie adjacent to that previously laid.
- polar
- domed ends or spherical components

Helical winding

Circumferential winding

- fibres constrained by bosses on each pole of the component.
- axial $\left(0^{\circ}\right)$
- beware: difficult to maintain ision

Filament winding patterns

polar:

Applications of filament winding:

 hollow and circular or oval sectioned components, such as pipes and tanks. Pressure vessels, pipes and drive shafts.- Kevlar component
 RGACollege of Engg. . Tech., (Autonomeus)
NANDYAL 518 S , Kurnoof (Dist), A.P

Filament wound pressure bottles for gas storage

Dr. T. JAYACHANDRA PRASAD
ME,Ph.D. FIEFRETEMNAFEN, MSTEMIEEE PRINCIPAL
R G M College of Engg. \& Tech., (Autonomous) NANDYAL-518501, Kurnool (Dt), A.P.

Manufacturing Process of thermosetting polymers:

Pultrusion:

Pultrusion is a process where composite parts are manufactured by pulling layers of fibers/fabrics, bathed with resin, through a heated die, thus forming the desired crosssectional shape with no length limitation.

Pultrusion

Manufacturing

- Fibers are brought together over rollers, dipped in resin and drawn through a heated die. A
 continuous cross section composite part emerges on the other side.

Pultrusion process:

Fibers are pulled from a set of fiber creels and through a resin bath. It then pass through a performer which gives it required cross sectional shape. The F \& C dies finalize the required shape \& remove excess resin \& cure the composite so that it can be cut into required length.

Pultrusion

- Design
- Hollow parts can be made using a mandrel that extends out the exit side of the die.
- Variable cross section parts are possible using dies with sliding parts.
- Two main types of dies are used, fixed and floating. Fixed dies can generate large forces to wet fiber. Floating dies require an external power source to create the hydraulic forces in the res 2r"- are used when curing is to be done by the heated di
- Very low scrap. Up to 95% utilization of materials (75% for layup).
- Rollers are used to ensure proper resin impregnation of the fiber.
- Material forms can also be used at the inlet to the die when materials such as mats, weaves, or stitched material is used.
- For curing, tunnel ovens can be used. After the part is formed and gelled in the die, it emerges, enters a tunnel oven where curing is completed.
- Another method is, the process runs intermittently with sections emerging from the die, and the pull is stopped, split dies are brought up to the sections to cure it, they then retract, and the pull continues. (Typical lengths for curing are 6 " to 24 ")
- Materials
- Most fibers are used (carbon, glass, aramids) and Resins must be fast curing because of process speeds. (polyester and epoxy)
- Processing
- speeds are 0.6 to $1 \mathrm{~m} / \mathrm{min}$; thickness are 1 to 76 mm ; diameters are 3 mm to 150 mm
- double clamps, or belts/chains can be used to pull the part through. The best designs allow for continuous operation for production.
- diamond or carbide saws are used to cut sections of the final part. The saw is designed to track the part as it moves.
- these parts have good axial properties.
- Advantages
- good material usage compared to layup
- high throughput and higher resin contents are possible
- Disadvantages
- part cross section should be uniform.
- Fiber and resin might accumulate at the die opening, leading to increased friction causing jamming, and breakage.
- when excess resin is used, part strength will decrease
- void can result if the die does not conform well to the fibers being pulled
- quick curing systems decrease strength

Pultrusion -characteristics

- seek uniform thickness in order to achieve uniform cooling and hence minimise residual stress.
- hollow profiles require a cantilevered mandrel to enter the die from the fibre-feed end.
- continuous constant cross-section profile
- normally thermoset (thermoplastic possible)
- impregnate with resin
- pull through a heated die
- resin shrinkage reduces friction in the die
- polyester easier to process than epoxy
- tension control as in filament winding
- post-die, profile air-cooled before gripped
- hand-over-hand hydraulic clamps
- conveyor belt/caterpillar track systems.
- moving cut-off machine ("flying cutter"). The solid laminate will be cut to the desired length
- Incinn the metal die, precise temperature control activates the curit t resin.
- Shapes such as rods, channels, angle and flat stocks can be easily produced.
- Production rate is 10 to $200 \mathrm{~cm} / \mathrm{min}$.
- Profiles as wide as 1.25 m with more than 60% fiber volume fraction can be made routinely.
- No bends or tapers allowed (continuous molding cycle)

> Pultrusion process:

Advantages:

- High volume productivity
- Rapid processing
- Low material scrap rate
- Good quality control

Potential Problems:

- Improper fiber wet-out
- Fiber breakage
- Die jamming
- Complex die design

$>$ Pultrusion process: Applications

- Uses as Panels, Beams, Ladders
- Tool Handles,
- Electrical Insulators,
- Light poles, Hand rails, Roll-up doors etc

Resin Transfer Molding

- In the RTM process, dry reinforcement is pre-shaped and oriented into skeleton of the actual part known as the preform which is inserted into a heated matched die mold .
- The heated mold is closed and the liquid resin is injected.
- The part is cured in mold.

F Finally mold is opened and part is removed from mold.

Preform Tool

Cure

$>$ Resin Transfer Molding

Advantages

- Large complex shapes and curvatures can be made easily.
- High level of automation.
- Simpler than in manual operations.
- Takes less time to produce.
- Low volatile emission

Cost effective.

- Low skill labor required

$>$ Resin Transfer Molding

Disadvantages

- Mold design is complex.
- Requires Mold-filling Analysis.
- Fiber reinforcement may Move during resin transfer.

$>$ Resin Transfer Molding

Application:

- Wind Turbine blade.
- Ship body.
- Car body.
- Truck panel.

Figure 1-1 A typial vaxum baging hy-up before and after tranam is app

Atmosphenc pressure $=14.7 p \dot{ }$ Envelope pressure $=14.7 \rho \mathrm{j}$
Pressye dfferential $=0$

Vacuum bagging -Equipment

WN
Dr K. THIRUPATHI REDDY Protessor of Hewnich of Mate and stime ins

Dr. T. JAYACHANDRA PRASAD
ME.Ph.D.FIEF FETEMNAFEN, MSTEMIEEE PRINCIPAL
R G M College of Engg. \& Tech., (Autonomous) NANDYAL-518501, Kurnool (Dt), A.P.

Vacuum Bagging - Materials

- Release fabric
- Perforated film
- Breather Material
- Vacuum bag
- Mastic sealant
- Plumbing system
- Mold release

Release fabric:

-Smooth woven fabric - not bond to epoxy.

- Used to separate breather and laminate.
- Excess epoxy can wick through release fabric.

Perforated film:

-Used in conjunction with release fabric.

- This film helps to hold the resin in laminate, when high vacuum pressure is used with slow curing resin system (or) thin laminates.

Breather material:

- (or) bleeder cloth.
- Allows air from all parts of the envelope - to be drawn to a port (or) manifold by providing slight air space between the bag and laminate.

Vacuum bag:

-If vacuum pressure less than 5 psi(10 hg) at room temperature - 6 mil polyethylene plastic can be used.
-Clear plastic material is preferable as compared to opaque - for easy inspection

- For high pressure and temperature applications specially manufactured vacuum bags can be used.
- Vacuum bag should always larger than mould.

Mastic sealant:

- Provide a continuous air tight sealant between bag and mold.
- Also used to seal the point where the manifold enters the bag and to repair leaks in the bag.

Plumbing system:

-Provides an airtight passage from vacuum envelope to vacuum pump - allowing pump to remove air.

- A basic system consists of flexible (or) rigid hose pipe, a trap, a port that connects pipe to the envelope.
-Vacuum hose designed specially for this.
-Vacuum port connects the exhaust tubing to vacuum bag.
-Control valve - control of airflow at the envelope.
- Trap incorporated into the line as close as possible to the envelope.
- Vacuum gauge - is necessary to monitor the level.

The reading of negative pressure inside the bag is equal to the net pressure of the atmospheric pressing on the outside of the bag.

Vacuum Bagging - Advantages

- Even Clamping pressure
- Control of resin content
- Custom shapes
- Efficient laminating

Or K. THIRUPATHI REDDY Protessor \& Heach M Meck, mo wiste, Mwe epartment of Mechanical Engineering

Dr. T. JAYACHANDRA PRASAD

Types of processing discussed at a glance

Application

Motor vehicles
Spots goods such as fishing rods, skipoles. Boats and marine

Application

Truck panels, Wind turbine blades
Medical composites
Bathroom fixtures, Car body , helmet, etc

Thank You

UNIT-IV

2

Macromechanical Analysis of a Lamina

Chapter Objectives

- Review definitions of stress, strain, elastic moduli, and strain energy.
- Develop stress-strain relationships for different types of materials.
- Develop stress-strain relationships for a unidirectional/bidirectional lamina.
- Find the engineering constants of a unidirectional/bidirectional lamina in terms of the stiffness and compliance parameters of the lamina.
- Develop stress-strain relationships, elastic moduli, strengths, and thermal and moisture expansion coefficients of an angle ply based on those of a unidirectional/bidirectional lamina and the angle of the ply.

2.1 Introduction

A lamina is a thin layer of a composite material that is generally of a thickness on the order of 0.005 in . (0.125 mm). A laminate is constructed by stacking a number of such laminae in the direction of the lamina thickness (Figure 2.1). Mechanical structures made of these laminates, such as a leaf spring suspension system in an automobile, are subjected to various loads, such as bending and twisting. The design and analysis of such laminated structures demands knowledge of the stresses and strains in the laminate. Also, design tools, such as failure theories, stiffness models, and optimization algorithms, need the values of these laminate stresses and strains.

However, the building blocks of a laminate are single lamina, so understanding the mechanical analysis of a lamina precedes understanding that of a laminate. A lamina is unlike an isotropic homog example, if the lamina is made of isotropic homoge

FIGURE 2.1

Typical laminate made of three laminae.
isotropic homogeneous matrix, the stiffness of the lamina varies from point to point depending on whether the point is in the fiber, the matrix, or the fiber-matrix interface. Accounting for these variations will make any kind of mechanical modeling of the lamina very complicated. For this reason, the macromechanical analysis of a lamina is based on average properties and considering the lamina to be homogeneous. Methods to find these average properties based on the individual mechanical properties of the fiber and the matrix, as well as the content, packing geometry, and shape of fibers are discussed in Chapter 3.

Even with the homogenization of a lamina, the mechanical behavior is still different from that of a homogeneous isotropic material. For example, take a square plate of length and width w and thickness t out of a large isotropic plate of thickness t (Figure 2.2) and conduct the following experiments.

Case A : Subject the square plate to a pure normal load P in direction 1. Measure the normal deformations in directions 1 and $2, \delta_{1 A}$ and $\delta_{2 A}$, respectively.
Case B: Apply the same pure normal load P as in case A, but now in direction 2. Measure the normal deformations in directions 1 and 2, $\delta_{1 B}$ and $\delta_{2 B}$, respectively.

Note that

$$
\begin{align*}
& \delta_{1 A}=\delta_{2 B}, \tag{2.1a,b}\\
& \delta_{2 A}=\delta_{1 B} .
\end{align*}
$$

However, taking a unidirectional square plate (Fig Nimmonsin $n \cdots v \times t$ out of a large composite lamir

FIGURE 2.2
Deformation of square plate taken from an isotropic plate under normal loads.

$$
\begin{align*}
& \delta_{1 A} \neq \delta_{2 B}, \tag{2.2a,b}\\
& \delta_{2 A} \neq \delta_{1 B} .
\end{align*}
$$

because the stiffness of the unidirectional lamina in the direction of fibers is much larger than the stiffness in the direction perpendicular to the fibers. Thus, the mechanical characterization of a unidirectional lamina will require more parameters than it will for an isotropic lamina.

Also, note that if the square plate (Figure 2.4) taken (

FIGURE 2.3

Deformation of a square plate taken from a unidirectional lamina with fibers at zero angle under normal loads.
deformations in the normal directions but would also distort. This suggests that the mechanical characterization of an angle lamina is further complicated.

Mechanical characterization of materials generally requires costly and time-consuming experimentation and/or theoretical modeling. Therefore, the goal is to find the minimum number of parameters required for the mechanical characterization of a lamina.

Also, a composite laminate may be subjected to a temperature change and may absorb moisture during processing and operation. These changes in temperature and moisture result in residual stresses and strains in the laminate. The calculation of these stresses and strains in a laminate depends on the response of each lamina to these two environment: ' chapter, the stress-strain relationships based on tem] mnicturn enntont will also be developed for a single l_{i} moisture on a laminate are discussed

FIGURE 2.4
Deformation of a square plate taken from a unidirectional lamina with fibers at an angle under normal loads.

2.2 Review of Definitions

2.2.1 Stress

A mechanical structure takes external forces, which act upon a body as surface forces (for example, bending a stick) and body forces (for example, the weight of a standing vertical telephone pole on itself). These forces result in internal forces inside the body. Knowledge of the internal forces at all points in the body is essential because these forces need to be less than the strength of the material used in the structure. Stress, which is defined as the intensity of the load per unit area, determines this knowledge because the strengths of a material are intrinsically known in term
Imagine a body (Figure 2.5) in equilibrium under vari iction, forces will need to be applied (intains equilibrium as in the origina

FIGURE 2.5
Stresses on an infinitesimal area on an arbitrary plane.
section, a force ΔP is acting on an area of ΔA. This force vector has a component normal to the surface, ΔP_{n}, and one parallel to the surface, ΔP_{s}. The definition of stress then gives

$$
\begin{align*}
\sigma_{n} & =\lim _{\Delta A \rightarrow 0} \frac{\Delta P_{n}}{\Delta A} \\
\tau_{s} & =\lim _{\Delta A \rightarrow 0} \frac{\Delta P_{s}}{\Delta A} \tag{2.3a,b}
\end{align*}
$$

The component of the stress normal to the surface, σ_{n}, is called the normal stress and the stress parallel to the surface, τ_{s}, is called the shear stress. If one takes a different cross-section through the same point, the stress remains unchanged but the two components of stress, normal stress, σ_{n}, and shear stress, τ_{s}, will change. However, it has been proved that a complete definition of stress at a point only needs use of any three mutual] nate systems, such as a Cartesian coordinate system.

FIGURE 2.6
Forces on an infinitesimal area on the $y-z$ plane.
on an area ΔA. The component ΔP_{x} is normal to the surface. The force vector ΔP_{s} is parallel to the surface and can be further resolved into components along the y and z axes: ΔP_{y} and ΔP_{z}. The definition of the various stresses then is

$$
\begin{align*}
& \sigma_{x}=\lim _{\Delta A \rightarrow 0} \frac{\Delta P_{x}}{\Delta A} \\
& \tau_{x y}=\lim _{\Delta A \rightarrow 0} \frac{\Delta P_{y}}{\Delta A}, \\
& \tau_{x z}=\lim _{\Delta A \rightarrow 0} \frac{\Delta P_{z}}{\Delta A} \tag{2.4a-c}
\end{align*}
$$

Similarly, stresses can be defined for cross-sections F

FIGURE 2.7
Stresses on an infinitesimal cuboid.
and finding the stresses on each of its faces. Nine different stresses act at a point in the body as shown in Figure 2.7. The six shear stresses are related as

$$
\begin{align*}
& \tau_{x y}=\tau_{y x}, \\
& \tau_{y z}=\tau_{z y}, \\
& \tau_{z x}=\tau_{x z} . \tag{2.5a-c}
\end{align*}
$$

The preceding three relations are found by equilibrium of moments of the infinitesimal cube. There are thus six independent stresses. The stresses σ_{x}, σ_{y}, and σ_{z} are normal to the surfaces of the cuboid and the stresses $\tau_{y z}, \tau_{z x}$ and $\tau_{x y}$ are along the surfaces of the cuboid.

A tensile normal stress is positive, and a compressive normal stress is negative. A shear stress is positive, if its direction and the direction of the normal to the face on which it is acting are both in positive or negative direction; otherwise, the shear stress is negative.

2.2.2 Strain

Similar to the need for knowledge of forces inside a body, knowing the deformations because of the external forces is also important. For example, a piston in an internal combustion engine may not develop larger stresses than the failure strengths, but its excessive deformation " Also, finding stresses in a body generally requires findir is because a stress state at a point has six component

FIGURE 2.8
Normal and shearing strains on an infinitesimal area in the $x-y$ plane.
The knowledge of deformations is specified in terms of strains - that is, the relative change in the size and shape of the body. The strain at a point is also defined generally on an infinitesimal cuboid in a right-hand coordinate system. Under loads, the lengths of the sides of the infinitesimal cuboid change. The faces of the cube also get distorted. The change in length corresponds to a normal strain and the distortion corresponds to the shearing strain. Figure 2.8 shows the strains on one of the faces, $A B C D$, of the cuboid.
The strains and displacements are related to each other. Take the two perpendicular lines $A B$ and $A D$. When the body is loaded, the two lines become $A^{\prime} B^{\prime}$ and $A^{\prime} D^{\prime}$. Define the displacements of a point (x, y, z) as

$$
\begin{aligned}
& u=u(x, y, z)=\text { displacement in } x \text {-direction at point }(x, y, z) \\
& v=v(x, y, z)=\text { displacement in } y \text {-direction at point }(x, y, z) \\
& w=w(x, y, z)=\text { displacement in } z \text {-direction at point }(x, y, z)
\end{aligned}
$$

The normal strain in the x-direction, ε_{x}, is defined as the change of length of line $A B$ per unit length of $A B$ as

$$
\varepsilon_{x}=\lim _{A B \rightarrow 0} \frac{A^{\prime} B^{\prime}-A B}{A B},
$$

Dr. T. JAYACHANDRA PRASAD

PRINCIPAL

$$
\begin{gather*}
A^{\prime} B^{\prime}=\sqrt{\left(A^{\prime} P^{\prime}\right)^{2}+\left(B^{\prime} P^{\prime}\right)^{2}}, \\
=\sqrt{[\Delta x+u(x+\Delta x, y)-u(x, y)]^{2}+[v(x+\Delta x, y)-v(x, y)]^{2}} \\
A B=\Delta x . \tag{2.7a,b}
\end{gather*}
$$

Substituting the preceding expressions of Equation (2.7) in Equation (2.6),

$$
\varepsilon_{x}=\lim _{\Delta x \rightarrow 0}\left\{\left[1+\frac{u(x+\Delta x, y)-u(x, y)}{\Delta x}\right]^{2}+\left[\frac{v(x+\Delta x, y)-v(x, y)}{\Delta x}\right]^{2}\right\}^{1 / 2}-1
$$

Using definitions of partial derivatives

$$
\begin{gather*}
\varepsilon_{x}=\left[\left(1+\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}\right]^{1 / 2}-1 \\
\varepsilon_{x}=\frac{\partial u}{\partial x} \tag{2.8}
\end{gather*}
$$

because

$$
\begin{aligned}
& \frac{\partial u}{\partial x} \ll 1, \\
& \frac{\partial v}{\partial x} \ll 1,
\end{aligned}
$$

for small displacements.
The normal strain in the y-direction, ε_{y} is defined as the change in the length of line $A D$ per unit length of $A D$ as

$$
\begin{equation*}
\varepsilon_{y}=\lim _{A D \rightarrow 0} \frac{A^{\prime} D^{\prime}-A D}{A D} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{gathered}
A^{\prime} D^{\prime}=\sqrt{\left(A^{\prime} Q^{\prime}\right)^{2}+\left(Q^{\prime} D^{\prime}\right)^{2}}, \\
A^{\prime} D^{\prime}=\sqrt{[\Delta y+v(x, y+\Delta y)-v(x, y)]^{2}+[u(x, y+\Delta y)-u(x, y)]^{2}},
\end{gathered}
$$

$$
\begin{equation*}
A D=\Delta y \tag{2.10a,b}
\end{equation*}
$$

Substituting the preceding expressions of Equation (2.10) in Equation (2.9),

$$
\varepsilon_{y}=\lim _{\Delta y \rightarrow 0}\left\{\left[1+\frac{v(x, y+\Delta y)-v(x, y)\}}{\Delta y}\right]^{2}+\left[\frac{u(x, y+\Delta y)-u(x, y)}{\Delta y}\right]^{2}\right\}^{1 / 2}-1
$$

Using definitions of partial derivatives,

$$
\begin{gather*}
\varepsilon_{y}=\left[\left(1+\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right]^{1 / 2}-1 \\
\varepsilon_{y}=\frac{\partial v}{\partial y} \tag{2.11}
\end{gather*}
$$

because

$$
\begin{aligned}
& \frac{\partial u}{\partial y} \ll 1, \\
& \frac{\partial v}{\partial y} \ll 1,
\end{aligned}
$$

for small displacements.
A normal strain is positive if the corresponding length increases; a normal strain is negative if the corresponding length decreases.

The shearing strain in the $x-y$ plane, $\gamma_{x y}$ is defined as the change in the angle between sides $A B$ and $A D$ from 90°. This angular change takes place by the inclining of sides $A B$ and $A D$. The shearing strain is thus defined as

$$
\gamma_{x y}=\theta_{1}+\theta_{2}
$$

where

$$
\begin{gather*}
q_{1}=\lim _{A B \rightarrow 0} \frac{P^{\prime} B^{\prime}}{A^{\prime} P^{\prime}} \\
P^{\prime} B^{\prime}=v(x+\Delta x, y)-v(x, y), \\
A^{\prime} P^{\prime}=u(x+\Delta x, y)+\Delta x-u(x, y), \tag{2.13a-c}\\
\theta_{2}=\lim _{A D \rightarrow 0} \frac{Q^{\prime} D^{\prime}}{A^{\prime} Q^{\prime}} \\
Q^{\prime} D^{\prime}=u(x, y+\Delta y)-u(x, y), \\
A^{\prime} Q^{\prime}=v(x, y+\Delta y)+\Delta y-v(x, y) . \tag{2.14a-c}
\end{gather*}
$$

Substituting Equation (2.13) and Equation (2.14) in Equation (2.12),

$$
\begin{gather*}
\gamma_{x y}=\lim _{\substack{\Delta x \rightarrow 0 \\
\Delta y \rightarrow 0}} \frac{\frac{v(x+\Delta x, y)-v(x, y)}{u x}}{\frac{u x+\Delta x, y)+\Delta x-u(x, y)}{\Delta x}}+\frac{\frac{u(x, y+\Delta y)-u(x, y)}{\Delta y}}{\frac{v(x, y+\Delta y)+\Delta y-v(x, y)}{\Delta y}} \\
=\frac{\frac{\partial v}{\partial x}}{1+\frac{\partial u}{\partial x}}+\frac{\frac{\partial u}{\partial y}}{1+\frac{\partial u}{\partial y}} \\
=\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}, \tag{2.15}
\end{gather*}
$$

because

$$
\begin{aligned}
& \frac{\partial u}{\partial x} \ll 1, \\
& \frac{\partial v}{\partial y} \ll 1,
\end{aligned}
$$

The shearing strain is positive when the angle between the sides $A D$ and $A B$ decreases; otherwise, the shearing strain is negative.

The definitions of the remaining normal and shearing strains can be found by noting the change in size and shape of the other sides of the infinitesimal cuboid in Figure 2.7 as

$$
\begin{gather*}
\gamma_{y z}=\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y} \\
\gamma_{z x}=\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}, \\
\varepsilon_{z}=\frac{\partial w}{\partial z} . \tag{2.16a-c}
\end{gather*}
$$

Example 2.1

A displacement field in a body is given by

$$
\begin{aligned}
& u=10^{-5}\left(x^{2}+6 y+7 x y\right) \\
& v=10^{-5}(y z) \\
& w=10^{-5}\left(x y+y z^{2}\right)
\end{aligned}
$$

Find the state of strain at $(x, y, z)=(1,2,3)$.

Solution

From Equation (2.8),

$$
\begin{gathered}
\epsilon_{x}=\frac{\partial u}{\partial x} \\
=\frac{\partial}{\partial x}\left(10^{-5}\left(x^{2}+6 y+7 x z\right)\right) \\
=10^{-5}(2 x+7 z) \\
=10^{-5}(2 \times 1+7 \times 3)
\end{gathered}
$$

$$
=2.300 \times 10^{-4}
$$

From Equation (2.11),

$$
\begin{gathered}
\epsilon_{y}=\frac{\partial v}{\partial y} \\
=\frac{\partial}{\partial y}\left(10^{-5}(y z)\right) \\
=10^{-5}(z) \\
=10^{-5}(3) \\
=3.000 \times 10^{-5} .
\end{gathered}
$$

From Equation (2.16c),

$$
\begin{gathered}
\epsilon_{z}=\frac{\partial w}{\partial z} \\
=\frac{\partial}{\partial z}\left(10^{-5}\left(x y+y z^{2}\right)\right) \\
=10^{-5}(2 y z) \\
=10^{-5}(2 \times 2 \times 3) \\
=1.2 \times 10^{-4} .
\end{gathered}
$$

From Equation (2.15),

$$
\gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
$$

$\underset{\substack{\text { RUPATHI REDDY }}}{\text { RENTMS }}=\frac{\partial}{\partial y}\left(10^{-5}\left(x^{2}+6 y+7 x z\right)\right)+\frac{\partial}{\partial x}\left(10^{-5}(1\right.$ Dr. T. JAYACHANDRA PRASAD

$$
\begin{gathered}
=10^{-5}(6)+10^{-5}(0) \\
=6.000 \times 10^{-5} .
\end{gathered}
$$

From Equation (2.16a),

$$
\begin{gathered}
\gamma_{y z}=\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y} \\
=\frac{\partial}{\partial z}\left(10^{-5}(y z)\right)+\frac{\partial}{\partial y}\left(10^{-5}\left(x y+y z^{2}\right)\right) \\
=10^{-5}(y)+10^{-5}\left(x+z^{2}\right) \\
=10^{-5}(2)+10^{-5}\left(1+3^{2}\right) \\
=1.2 \times 10^{-4} .
\end{gathered}
$$

From Equation (2.16b),

$$
\begin{gathered}
\gamma_{z x}=\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z} \\
=\frac{\partial}{\partial x}\left(10^{-5}\left(x y+y z^{2}\right)\right)+\frac{\partial}{\partial z}\left(10^{-5}\left(x^{2}+6 y+7 x z\right)\right) \\
=10^{-5}(y)+10^{-5}(7 x) \\
=10^{-5}(2)+10^{-5}(7 \times 1) \\
=9.000 \times 10^{-5} .
\end{gathered}
$$

2.2.3 Elastic Moduli

FIGURE 2.9
Cartesian coordinates in a three-dimensional body.
elastic and has small deformations, stresses and strains at a point are related through six simultaneous linear equations called Hooke's law. Note that 15 unknown parameters are at a point: six stresses, six strains, and three displacements. Combined with six simultaneous linear equations of Hooke's law, six strain-displacement relations - given by Equation (2.8), Equation (2.11), Equation (2.15), and Equation (2.16) - and three equilibrium equations give 15 equations for the solution of 15 unknowns. ${ }^{1}$ Because strain-displacement and equilibrium equations are differential equations, they are subject to knowing boundary conditions for complete solutions.

For a linear isotropic material in a three-dimensional stress state, the Hooke's law stress-strain relationships at a point in an $x-y-z$ orthogonal system (Figure 2.9) in matrix form are

$$
\left[\begin{array}{c}
\varepsilon_{x} \tag{2.17}\\
\varepsilon_{y} \\
\varepsilon_{z} \\
\gamma_{y z} \\
\gamma_{z x} \\
\gamma_{x y}
\end{array}\right]=\left[\begin{array}{cccccc}
\frac{1}{E} & -\frac{v}{E} & -\frac{v}{E} & 0 & 0 & 0 \\
-\frac{v}{E} & \frac{1}{E} & -\frac{v}{E} & 0 & 0 & 0 \\
-\frac{v}{E} & -\frac{v}{E} & \frac{1}{E} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{G} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{G} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{G}
\end{array}\right]\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{z} \\
\tau_{y z} \\
\tau_{z x} \\
\tau_{x y}
\end{array}\right],
$$

$$
\left[\begin{array}{c}
\sigma_{x} \tag{2.18}\\
\sigma_{y} \\
\sigma_{z} \\
\tau_{y z} \\
\tau_{z x} \\
\tau_{x y}
\end{array}\right]=\left[\begin{array}{rrrrrr}
\frac{E(1-v)}{(1-2 v)(1+v)} & \frac{v E}{(1-2 v)(1+v)} & \frac{v E}{(1-2 v)(1+v)} & 0 & 0 & 0 \\
\frac{v E}{(1-2 v)(1+v)} & \frac{E(1-v)}{(1-2 v)(1+v)} & \frac{v E}{(1-2 v)(1+v)} & 0 & 0 & 0 \\
\frac{v E}{(1-2 v)(1+v)} & \frac{v E}{(1-2 v)(1+v)} & \frac{E(1-v)}{(1-2 v)(1+v)} & 0 & 0 & 0 \\
0 & 0 & 0 & G & 0 & 0 \\
0 & 0 & 0 & 0 & G & 0 \\
0 & 0 & 0 & 0 & 0 & G
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\varepsilon_{z} \\
\gamma_{y z} \\
\gamma_{z x} \\
\gamma_{x y}
\end{array}\right],
$$

where v is the Poisson's ratio. The shear modulus G is a function of two elastic constants, E and v, as

$$
\begin{equation*}
G=\frac{E}{2(1+v)} . \tag{2.19}
\end{equation*}
$$

The 6×6 matrix in Equation (2.17) is called the compliance matrix [S] of an isotropic material. The 6×6 matrix in Equation (2.18), obtained by inverting the compliance matrix in Equation (2.17), is called the stiffness matrix [C] of an isotropic material.

2.2.4 Strain Energy

Energy is defined as the capacity to do work. In solid, deformable, elastic bodies under loads, the work done by external loads is stored as recoverable strain energy. The strain energy stored in the body per unit volume is then defined as

$$
\begin{equation*}
W=\frac{1}{2}\left(\sigma_{x} \varepsilon_{x}+\sigma_{y} \varepsilon_{y}+\sigma_{z} \varepsilon_{z}+\tau_{x y} \gamma_{x y}+\tau_{y z} \gamma_{y z}+\tau_{z x} \gamma_{z x}\right) \tag{2.20}
\end{equation*}
$$

Example 2.2

Consider a bar of cross-section A and length L (Figure 2.10). A uniform tensile load P is applied to the two ends of the rod; find the stat and strain energy per unit volume of the body. Assum ϵ of a hnmnonenenis isotropic material of Young's modu

FIGURE 2.10
Cylindrical rod under uniform uniaxial load, P.

Solution

The stress state at any point is given by

$$
\begin{equation*}
\sigma_{x}=\frac{P}{A}, \sigma_{y}=0, \sigma_{z}=0, \tau_{y z}=0, \tau_{z x}=0, \tau_{x y}=0 . \tag{2.21}
\end{equation*}
$$

If the circular rod is made of an isotropic, homogeneous, and linearly elastic material, then the stress-strain at any point is related as

$$
\begin{gather*}
{\left[\begin{array}{r}
\varepsilon_{x} \\
\varepsilon_{y} \\
\varepsilon_{z} \\
\gamma_{y z} \\
\gamma_{z x} \\
\gamma_{x y}
\end{array}\right]=\left[\begin{array}{rrrrrr}
\frac{1}{E} & -\frac{v}{E} & -\frac{v}{E} & 0 & 0 & 0 \\
-\frac{v}{E} & \frac{1}{E} & -\frac{v}{E} & 0 & 0 & 0 \\
-\frac{v}{E} & -\frac{v}{E} & \frac{1}{E} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{G} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{G} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{G}
\end{array}\right]\left[\begin{array}{c}
\frac{P}{A} \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],} \tag{2.22}\\
\varepsilon_{x}=\frac{P}{A E}, \varepsilon_{y}=-\frac{v P}{A E}, \varepsilon_{z}=-\frac{v P}{A E}, \\
\gamma_{y z}=0, \gamma_{z x}=0, \gamma_{x y}=0 .
\end{gather*}
$$

Thantwin monng stored per unit volume in the rod, F

$$
\begin{align*}
W=\frac{1}{2}\left[\left(\frac{P}{A}\right)\left(\frac{P}{A E}\right)+(0)\left(-\frac{v P}{A E}\right)\right. & \left.+(0)\left(-\frac{v P}{A E}\right)+(0)(0)+(0)(0)+(0)(0)\right] \\
& =\frac{1}{2} \frac{P^{2}}{A^{2} E} \\
& =\frac{1}{2} \frac{\sigma_{x}^{2}}{E} \tag{2.24}
\end{align*}
$$

2.3 Hooke's Law for Different Types of Materials

The stress-strain relationship for a general material that is not linearly elastic and isotropic is more complicated than Equation (2.17) and Equation (2.18). Assuming linear and elastic behavior for a composite is acceptable; however, assuming it to be isotropic is generally unacceptable. Thus, the stress-strain relationships follow Hooke's law, but the constants relating stress and strain are more in number than seen in Equation (2.17) and Equation (2.18). The most general stress-strain relationship is given as follows for a three-dimensional body in a 1-2-3 orthogonal Cartesian coordinate system:

$$
\left[\begin{array}{c}
\sigma_{1} \tag{2.25}\\
\sigma_{2} \\
\sigma_{3} \\
\tau_{23} \\
\tau_{31} \\
\tau_{12}
\end{array}\right]=\left[\begin{array}{llllll}
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\
C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\
C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\
C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\
C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\
C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66}
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\gamma_{23} \\
\gamma_{31} \\
\gamma_{12}
\end{array}\right],
$$

where the 6×6 [C] matrix is called the stiffness matrix. The stiffness matrix has 36 constants.

What happens if one changes the system of coordinates from an orthogonal system $1-2-3$ to some other orthogonal system, $1^{\prime}-2^{\prime}-3^{\prime}$? Then, new stiffness and compliance constants will be required to relate stresses and strains in the new coordinate system $1^{\prime}-2^{\prime}-3^{\prime}$. However, the new stiffness and compliance matrices in the $1^{\prime}-2^{\prime}-3^{\prime}$ system will be a functior compliance matrices in the $1-2-3$ system and the angle

Inverting Equation (2.25), the general strain-stress relationship for a threedimensional body in a 1-2-3 orthogonal Cartesian coordinate system is

$$
\left[\begin{array}{c}
\varepsilon_{1} \tag{2.26}\\
\varepsilon_{2} \\
\varepsilon_{3} \\
\gamma_{23} \\
\gamma_{31} \\
\gamma_{12}
\end{array}\right]=\left[\begin{array}{llllll}
S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\
S_{21} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\
S_{31} & S_{32} & S_{33} & S_{34} & S_{35} & S_{36} \\
S_{41} & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} \\
S_{51} & S_{52} & S_{53} & S_{54} & S_{55} & S_{56} \\
S_{61} & S_{62} & S_{63} & S_{64} & S_{65} & S_{66}
\end{array}\right]\left[\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\tau_{23} \\
\tau_{31} \\
\tau_{12}
\end{array}\right] .
$$

In the case of an isotropic material, relating the preceding strain-stress equation to Equation (2.17), one finds that the compliance matrix is related directly to engineering constants as

$$
\begin{gather*}
S_{11}=\frac{1}{E}=S_{22}=S_{33} \\
S_{12}=-\frac{v}{E}=S_{13}=S_{21}=S_{23}=S_{31}=S_{32} \tag{2.27}\\
S_{44}=\frac{1}{G}=S_{55}=S_{66}
\end{gather*}
$$

and $S_{i j}$, other than in the preceding, are zero.
It can be shown that the 36 constants in Equation (2.25) actually reduce to 21 constants due to the symmetry of the stiffness matrix [C] as follows. The stress-strain relationship (2.25) can also be written as

$$
\begin{equation*}
\sigma_{i}=\sum_{j=1}^{6} C_{i j} \varepsilon_{j}, \quad i=1 \ldots 6 \tag{2.28}
\end{equation*}
$$

where, in a contracted notation,

$$
\begin{aligned}
& \sigma_{4}=\tau_{23}, \sigma_{5}=\tau_{31}, \sigma_{6}=\tau_{12} \\
& \varepsilon_{4}=\gamma_{23}, \varepsilon_{5}=\gamma_{31}, \varepsilon_{6}=\gamma_{12}
\end{aligned}
$$

The strain energy in the body per unit volume, per Equation (2.20), is expressed as

$$
\begin{equation*}
W=\frac{1}{2} \sum_{i=1}^{6} \sigma_{i} \varepsilon_{i} \tag{2.30}
\end{equation*}
$$

Substituting Hooke's law, Equation (2.28), in Equation (2.30),

$$
\begin{equation*}
W=\frac{1}{2} \sum_{i=1}^{6} \sum_{j=1}^{6} C_{i j} \varepsilon_{j} \varepsilon_{i} \tag{2.31}
\end{equation*}
$$

Now, by partial differentiation of Equation (2.31),

$$
\begin{equation*}
\frac{\partial W}{\partial \varepsilon_{i} \partial \varepsilon_{j}}=C_{i j}, \tag{2.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial W}{\partial \varepsilon_{j} \partial \varepsilon_{i}}=C_{j i} . \tag{2.33}
\end{equation*}
$$

Because the differentiation does not necessarily need to be in either order,

$$
\begin{equation*}
C_{i j}=C_{j i} . \tag{2.34}
\end{equation*}
$$

Equation (2.34) can also be proved by realizing that

$$
\sigma_{i}=\frac{\partial W}{\partial \varepsilon_{i}}
$$

Thus, only 21 independent elastic constants are in the general stiffness matrix [C] of Equation (2.25). This also implies that only 21 independent constants are in the general compliance matrix [S] of Equation (2.26).

2.3.1 Anisotropic Material

The material that has 21 independent elastic constants ; ial. Once these constants are found f ain relationship can be developed at

FIGURE 2.11

Transformation of coordinate axes for 1-2 plane of symmetry for a monoclinic material.
these constants can vary from point to point if the material is nonhomogeneous. Even if the material is homogeneous (or assumed to be), one needs to find these 21 elastic constants analytically or experimentally. However, many natural and synthetic materials do possess material symmetry - that is, elastic properties are identical in directions of symmetry because symmetry is present in the internal structure. Fortunately, this symmetry reduces the number of the independent elastic constants by zeroing out or relating some of the constants within the 6×6 stiffness [C] and 6×6 compliance [S] matrices. This simplifies the Hooke's law relationships for various types of elastic symmetry.

2.3.2 Monoclinic Material

If, in one plane of material symmetry* (Figure 2.11), for example, direction 3 is normal to the plane of material symmetry, then the stiffness matrix reduces to

$$
[C]=\left[\begin{array}{rrrrrr}
C_{11} & C_{12} & C_{13} & 0 & 0 & C_{16} \tag{2.35}\\
C_{12} & C_{22} & C_{23} & 0 & 0 & C_{26} \\
C_{13} & C_{23} & C_{33} & 0 & 0 & C_{36} \\
0 & 0 & 0 & C_{44} & C_{45} & 0 \\
0 & 0 & 0 & C_{45} & C_{55} & 0 \\
C_{16} & C_{26} & C_{36} & 0 & 0 & C_{66}
\end{array}\right] .
$$

$$
C_{14}=0, C_{15}=0, C_{24}=0, C_{25}=0, C_{34}=0, C_{35}=0, C_{46}=0, C_{56}=0 .
$$

The direction perpendicular to the plane of symmetry is called the principal direction. Note that there are 13 independent elastic constants. Feldspar is an example of a monoclinic material.
The compliance matrix correspondingly reduces to

$$
[S]=\left[\begin{array}{rrrrrr}
S_{11} & S_{12} & S_{13} & 0 & 0 & S_{16} \tag{2.36}\\
S_{12} & S_{22} & S_{23} & 0 & 0 & S_{26} \\
S_{13} & S_{23} & S_{33} & 0 & 0 & S_{36} \\
0 & 0 & 0 & S_{44} & S_{45} & 0 \\
0 & 0 & 0 & S_{45} & S_{55} & 0 \\
S_{16} & S_{26} & S_{36} & 0 & 0 & S_{66}
\end{array}\right] .
$$

Modifying an excellent example ${ }^{2}$ of demonstrating the meaning of elastic symmetry for a monoclinic material given, consider a cubic element of Figure 2.12 taken out of a monoclinic material, in which 3 is the direction perpendicular to the 1-2 plane of symmetry. Apply a normal stress, σ_{3}, to the element. Then using the Hooke's law Equation (2.26) and the compliance matrix (Equation 2.36) for the monoclinic material, one gets

$$
\begin{gather*}
\varepsilon_{1}=S_{13} \sigma_{3} \\
\varepsilon_{2}=S_{23} \sigma_{3} \\
\varepsilon_{3}=S_{33} \sigma_{3} \\
\gamma_{23}=0 \\
\gamma_{31}=0 \\
\gamma_{12}=S_{36} \sigma_{3} . \tag{2.37a-f}
\end{gather*}
$$

The cube will deform in all directions as determined ear strains in the $2-3$ and 3-1 plane a: not change shape in those planes. Ho

Dr. T. JAVACHANDRA PRASAD ME.Ph.D.FIE.FETE,MNAFEN,USTEMEEE PRINCIPAL

FIGURE 2.12
Deformation of a cubic element made of monoclinic material.
shape in the 1-2 plane. Thus, the faces $A B E H$ and $C D F G$ perpendicular to the 3 direction will change from rectangles to parallelograms, while the other four faces $A B C D, B E F C, G F E H$, and $A H G D$ will stay as rectangles. This is unlike anisotropic behavior, in which all faces will be deformed in shape, and also unlike isotropic behavior, in which all faces will remain undeformed in shape.

2.3.3 Orthotropic Material (Orthogonally Anisotropir)/Cnoriall, Orthotropic

FIGURE 2.13
A unidirectional lamina as a monoclinic material with fibers, arranged in a rectangular array.

$$
[C]=\left[\begin{array}{rrrrrr}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \tag{2.38}\\
C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\
C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{66}
\end{array}\right]
$$

The preceding stiffness matrix can be derived by starting from the stiffness matrix [C] for the monoclinic material (Equation 2.35). With two more planes of symmetry, it gives

$$
C_{16}=0, C_{26}=0, C_{36}=0, C_{45}=0 .
$$

Three mutually perpendicular planes of material symmetry also imply three mutually perpendicular planes of elastic symmetry. Note that nine independent elastic constants are present. This is a commonly found material symmetry unlike anisotropic and monoclinic materials. Examples of an orthotropic material include a single lamina of continuous fiber composite, arranged in a rectangular array (Figure 2.13), a wooden bar, and rolled steel.

The compliance matrix reduces to

FIGURE 2.14
Deformation of a cubic element made of orthotropic material.
Demonstrating the meaning of elastic symmetry for an orthotropic material is similar to the approach taken for a monoclinic material (Section 2.3.2). Consider a cubic element (Figure 2.14) taken out of the orthotropic material, where 1,2 , and 3 are the principal directions or $1-2,2-3$, and $3-1$ are the three mutually orthogonal planes of symmetry. Apply a normal stress, σ_{3}, to the element. Then, using the Hooke's law Equation (2.26) and the compliance matrix (Equation 2.39) for the orthotropic material, one gets

$$
\varepsilon_{1}=S_{13} \sigma_{3}
$$

$$
\varepsilon_{2}=S_{23} \sigma_{3}
$$

$$
\begin{align*}
& \varepsilon_{3}=S_{33} \sigma_{3} \\
& \gamma_{23}=0 \tag{2.40a-f}\\
& \gamma_{31}=0 \\
& \gamma_{12}=0 .
\end{align*}
$$

The cube will deform in all directions as determined by the normal strain equations. However, the shear strains in all three planes (1-2,2-3, and 3-1) are zero, showing that the element will not change shape in those planes. Thus, the cube will not deform in shape under any normal load applied in the principal directions. This is unlike the monoclinic material, in which two out of the six faces of the cube changed shape.

A cube made of isotropic material would not change its shape either; however, the normal strains, ε_{1} and ε_{2}, will be different in an orthotropic material and identical in an isotropic material.

2.3.4 Transversely Isotropic Material

Consider a plane of material isotropy in one of the planes of an orthotropic body. If direction 1 is normal to that plane (2-3) of isotropy, then the stiffness matrix is given by

$$
[C]=\left[\begin{array}{rrrrrr}
C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \tag{2.41}\\
C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\
C_{12} & C_{23} & C_{22} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{C_{22}-C_{23}}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{55}
\end{array}\right] .
$$

Transverse isotropy results in the following relations:

$$
C_{22}=C_{33}, C_{12}=C_{13}, C_{55}=C_{66}, C_{44}=\frac{C_{22}-C_{23}}{2} .
$$

FIGURE 2.15
A unidirectional lamina as a transversely isotropic material with fibers arranged in a square array.
a hexagonal array. One may consider the elastic properties in the two directions perpendicular to the fibers to be the same. In Figure 2.15, the fibers are in direction 1, so plane 2-3 will be considered as the plane of isotropy.

The compliance matrix reduces to

$$
[S]=\left[\begin{array}{rrrrrr}
S_{11} & S_{12} & S_{12} & 0 & 0 & 0 \tag{2.42}\\
S_{12} & S_{22} & S_{23} & 0 & 0 & 0 \\
S_{12} & S_{23} & S_{22} & 0 & 0 & 0 \\
0 & 0 & 0 & 2\left(S_{22}-S_{23}\right) & 0 & 0 \\
0 & 0 & 0 & 0 & S_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & S_{55}
\end{array}\right] .
$$

2.3.5 Isotropic Material

If all planes in an orthotropic body are identical, it is an isotropic material; then, the stiffness matrix is given by

$$
[C]=\left[\begin{array}{rrrrrr}
C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \tag{2.43}\\
C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\
C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{C_{11}-C_{12}}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{C_{11}-C_{12}}{2} & 0
\end{array}\right] .
$$

$$
C_{11}=C_{22}, C_{12}=C_{23}, C_{66}=\frac{C_{22}-C_{23}}{2}=\frac{C_{11}-C_{12}}{2} .
$$

This also implies infinite principal planes of symmetry. Note the two independent constants. This is the most common material symmetry available. Examples of isotropic bodies include steel, iron, and aluminum. Relating Equation (2.43) to Equation (2.18) shows that

$$
\begin{align*}
& C_{11}=\frac{E(1-v)}{(1-2 v)(1+v)} \\
& C_{12}=\frac{v E}{(1-2 v)(1+v)} \tag{2.44a-b}
\end{align*}
$$

Note that

$$
\begin{gathered}
\frac{C_{11}-C_{12}}{2} \\
=\frac{1}{2}\left[\frac{E(1-v)}{(1-2 v)(1+v)}-\frac{v E}{(1-2 v)(1+v)}\right] \\
=\frac{E}{2(1+v)} \\
=G .
\end{gathered}
$$

The compliance matrix reduces to

$$
[S]=\left[\begin{array}{rrrrrr}
S_{11} & S_{12} & S_{12} & 0 & 0 & 0 \tag{2.45}\\
S_{12} & S_{11} & S_{12} & 0 & 0 & 0 \\
S_{12} & S_{12} & S_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & 2\left(S_{11}-S_{12}\right) & 0 & 0 \\
0 & 0 & 0 & 0 & 2\left(S_{11}-S_{12}\right) & 0 \\
0 & 0 & 0 & 0 & 0 &
\end{array}\right] .
$$

- Anisotropic: 21
- Monoclinic: 13
- Orthotropic: 9
- Transversely isotropic: 5
- Isotropic: 2

Example 2.3

Show the reduction of anisotropic material stress-strain Equation (2.25) to those of a monoclinic material stress-strain Equation (2.35).

Solution

Assume direction 3 is perpendicular to the plane of symmetry. Now in the coordinate system 1-2-3, Equation (2.25) with $C_{i j}=C_{j i}$ from Equation (2.34) is

$$
\left[\begin{array}{r}
\sigma_{1} \tag{2.46}\\
\sigma_{2} \\
\sigma_{3} \\
\tau_{23} \\
\tau_{31} \\
\tau_{12}
\end{array}\right]=\left[\begin{array}{llllll}
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\
C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\
C_{13} & C_{23} & C_{33} & C_{34} & C_{35} & C_{36} \\
C_{14} & C_{24} & C_{34} & C_{44} & C_{45} & C_{46} \\
C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{56} \\
C_{16} & C_{26} & C_{36} & C_{46} & C_{56} & C_{66}
\end{array}\right]\left[\begin{array}{r}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\gamma_{23} \\
\gamma_{31} \\
\gamma_{12}
\end{array}\right],
$$

Also, in the coordinate system $1^{\prime}-2^{\prime}-3^{\prime}$ (Figure 2.11),

$$
\left[\begin{array}{r}
\sigma_{1^{\prime}} \tag{2.47}\\
\sigma_{2^{\prime}} \\
\sigma_{3^{\prime}} \\
\tau_{2^{\prime} 3^{\prime}} \\
\tau_{3^{\prime} \prime^{\prime}} \\
\tau_{1^{\prime} 2^{\prime}}
\end{array}\right]=\left[\begin{array}{lllll}
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} \\
C_{16} \\
C_{12} & C_{22} & C_{23} & C_{24} & C_{25} \\
C_{26} \\
C_{13} & C_{23} & C_{33} & C_{34} & C_{35} \\
C_{36} \\
C_{14} & C_{24} & C_{34} & C_{44} & C_{45} \\
C_{46} \\
C_{15} & C_{25} & C_{35} & C_{45} & C_{55} \\
C_{56} \\
C_{16} & C_{26} & C_{36} & C_{46} & C_{56}
\end{array} C_{66}\right]\left[\begin{array}{r}
\varepsilon_{1^{\prime}} \\
\varepsilon_{2^{\prime}} \\
\varepsilon_{3^{\prime}} \\
\gamma_{2^{\prime} 3^{\prime}} \\
\gamma_{3^{\prime} 1^{\prime}} \\
\gamma_{1^{\prime} 2^{\prime}}
\end{array}\right],
$$

Because there is a plane of symmetry normal to direction 3, the stresses and strains in the $1-2-3$ and $1^{\prime}-2^{\prime}-3^{\prime}$ coordinate systems are related by

$$
\sigma_{1}=\sigma_{1^{\prime}}, \sigma_{2}=\sigma_{2^{\prime}}, \sigma_{3}=\sigma_{3^{\prime}}
$$

$$
\tau_{23}-\tau_{2^{\prime} 3^{\prime}}, \tau_{31}=-\tau_{3^{\prime} 1^{\prime}}, \tau_{12}=\tau_{1^{\prime} 2^{\prime}},
$$

$$
\begin{gather*}
\varepsilon_{1}=\varepsilon_{1^{\prime}}, \varepsilon_{2}=\varepsilon_{2^{\prime}}, \varepsilon_{3}=\varepsilon_{3^{\prime}}, \\
\gamma_{23}=-\gamma_{2^{\prime} 3^{\prime}}, \gamma_{31}=-\gamma_{3^{\prime} 1^{\prime}}, \gamma_{12}=\gamma_{1^{\prime} 2^{\prime}} . \tag{2.49a-f}
\end{gather*}
$$

The terms in the first equation of Equation (2.46) and Equation (2.47) can be written as

$$
\begin{gather*}
\sigma_{1}=C_{11} \varepsilon_{1}+C_{12} \varepsilon_{2}+C_{13} \varepsilon_{3}+C_{14} \gamma_{23}+C_{15} \gamma_{31}+C_{16} \gamma_{12} \\
\sigma_{1^{\prime}}=C_{11} \varepsilon_{1^{\prime}}+C_{12} \varepsilon_{2^{\prime}}+C_{13} \varepsilon_{3^{\prime}}+C_{1^{\prime} 4} \gamma_{2^{\prime} 3^{\prime}}+C_{15} \gamma_{3^{\prime} 1^{\prime}}+C_{16} \gamma_{1^{\prime} 2^{\prime}} \tag{2.50a-b}
\end{gather*}
$$

Substituting Equation (2.48) and Equation (2.49) in Equation (2.50b),

$$
\begin{equation*}
\sigma_{1}=C_{11} \varepsilon_{1}+C_{12} \varepsilon_{2}+C_{13} \varepsilon_{3}-C_{14} \gamma_{23}-C_{15} \gamma_{31}+C_{16} \gamma_{12} \tag{2.51}
\end{equation*}
$$

Subtracting Equation (2.51) from Equation (2.50a) gives

$$
\begin{equation*}
0=2 C_{14} \gamma_{23}+2 C_{15} \gamma_{31} \tag{2.52}
\end{equation*}
$$

Because γ_{23} and γ_{31} are arbitrary,

$$
\begin{equation*}
C_{14}=C_{15}=0 . \tag{2.53a}
\end{equation*}
$$

Similarly, one can show that

$$
\begin{align*}
& C_{24}=C_{25}=0, \\
& C_{34}=C_{35}=0, \\
& C_{46}=C_{56}=0 . \tag{2.54b-d}
\end{align*}
$$

Thus, only 13 independent elastic constants are present in a monoclinic material.

Example 2.4

The stress-strain relation is given in terms of comp rial in Equation (2.26) and Equatior x equations in terms of the nine engi

FIGURE 2.16
Application of stresses to find engineering constants of a three-dimensional orthotropic body.
an orthotropic material. What is the stiffness matrix in terms of the engineering constants?

Solution

Let us see how the compliance matrix and engineering constants of an orthotropic material are related. As shown in Figure 2.16a, apply $\sigma_{1} \neq 0, \sigma_{2}$ $=0, \sigma_{3}=0, \tau_{23}=0, \tau_{31}=0, \tau_{12}=0$. Then, from Equation (2.26) and Equation (2.39):

$$
\begin{aligned}
& \varepsilon_{1}=S_{11} \sigma_{1} \\
& \varepsilon_{2}=S_{12} \sigma_{1} \\
& \varepsilon_{3}=S_{13} \sigma_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{23}=0 \\
& \gamma_{31}=0 \\
& \gamma_{12}=0
\end{aligned}
$$

The Young's modulus in direction $1, E_{1}$, is defined as

$$
\begin{equation*}
E_{1} \equiv \frac{\sigma_{1}}{\varepsilon_{1}}=\frac{1}{S_{11}} \tag{2.55}
\end{equation*}
$$

The Poisson's ratio, v_{12}, is defined as

$$
\begin{equation*}
v_{12} \equiv-\frac{\varepsilon_{2}}{\varepsilon_{1}}=-\frac{S_{12}}{S_{11}} . \tag{2.56}
\end{equation*}
$$

In general terms, $v_{i j}$ is defined as the ratio of the negative of the normal strain in direction j to the normal strain in direction i, when the load is applied in the normal direction i.

The Poisson's ratio v_{13} is defined as

$$
\begin{equation*}
v_{13} \equiv-\frac{\varepsilon_{3}}{\varepsilon_{1}}=-\frac{S_{13}}{S_{11}} . \tag{2.57}
\end{equation*}
$$

Similarly, as shown in Figure 2.16b, apply $\sigma_{1}=0, \sigma_{2}=0, \sigma_{3} \neq 0, \tau_{23}=0, \tau_{31}$ $=0, \tau_{12}=0$. Then, from Equation (2.26) and Equation (2.39),

$$
\begin{align*}
E_{2} & =\frac{1}{S_{22}} \tag{2.58}\\
v_{21} & =-\frac{S_{12}}{S_{22}} \tag{2.59}\\
v_{23} & =-\frac{S_{23}}{S_{22}} . \tag{2.60}
\end{align*}
$$

Similarly, as shown in Figure 2.16c, apply $\sigma_{1}=0, \sigma_{2}=0, \sigma_{3} \neq 0, \tau_{23}=0, \tau_{31}$ $=0, \tau_{12}=0$. From Equation (2.26) and Equation (2.39),

$$
\begin{align*}
& v_{31}=-\frac{S_{13}}{S_{33}} \tag{2.62}\\
& v_{32}=-\frac{S_{23}}{S_{33}} . \tag{2.63}
\end{align*}
$$

Apply, as shown in Figure 2.16d, $\sigma_{1}=0, \sigma_{2}=0, \sigma_{3}=0, \tau_{23} \neq 0, \tau_{31}=0, \tau_{12}$ $=0$. Then, from Equation (2.26) and Equation (2.39),

$$
\begin{gathered}
\varepsilon_{1}=0 \\
\varepsilon_{2}=0 \\
\varepsilon_{3}=0 \\
\gamma_{23}=S_{44} \tau_{23} \\
\gamma_{31}=0 \\
\gamma_{12}=0
\end{gathered}
$$

The shear modulus in plane $2-3$ is defined as

$$
\begin{equation*}
G_{23} \equiv \frac{\tau_{23}}{\gamma_{23}}=\frac{1}{S_{44}} . \tag{2.64}
\end{equation*}
$$

Similarly, as shown in Figure 2.16e, apply $\sigma_{1}=0, \sigma_{2}=0, \sigma_{3}=0, \tau_{23}=0, \tau_{31}$ $\neq 0, \tau_{12}=0$. Then, from Equation (2.26) and Equation (2.39),

$$
\begin{equation*}
G_{31}=\frac{1}{S_{55}} . \tag{2.65}
\end{equation*}
$$

Similarly, as shown in Figure 2.16f, apply $\sigma_{1}=0, \sigma_{2}=0, \sigma_{3}=0, \tau_{23}=0, \tau_{31}$ $=0, \tau_{12} \neq 0$. Then, from Equation (2.26) and Equation (2.39),

$$
\begin{equation*}
G_{12}=\frac{1}{S_{66}} . \tag{2.66}
\end{equation*}
$$

In Equation (2.55) through Equation (2.66), 12 enginє been defined as follows:

Six Poisson's ratios, $v_{12}, v_{13}, v_{21}, v_{23}, v_{31}$, and v_{32}, two for each plane Three shear moduli, G_{23}, G_{31}, and G_{12}, one for each plane

However, the six Poisson's ratios are not independent of each other. For example, from Equation (2.55), Equation (2.56), Equation (2.58), and Equation (2.59),

$$
\begin{equation*}
\frac{v_{12}}{E_{1}}=\frac{v_{21}}{E_{2}} \tag{2.67}
\end{equation*}
$$

Similarly, from Equation (2.55), Equation (2.57), Equation (2.61), and Equation (2.62),

$$
\begin{equation*}
\frac{v_{13}}{E_{1}}=\frac{v_{31}}{E_{3}} \tag{2.68}
\end{equation*}
$$

and from Equation (2.58), Equation (2.60), Equation (2.61), and Equation (2.63),

$$
\begin{equation*}
\frac{v_{23}}{E_{2}}=\frac{v_{32}}{E_{3}} \tag{2.69}
\end{equation*}
$$

Equation (2.67), Equation (2.68), and Equation (2.69) are called reciprocal Poisson's ratio equations. These relations reduce the total independent engineering constants to nine. This is the same number as the number of independent constants in the stiffness or the compliance matrix.

Rewriting the compliance matrix in terms of the engineering constants gives

$$
[S]=\left[\begin{array}{rrrrrr}
\frac{1}{E_{1}} & -\frac{v_{12}}{E_{1}} & -\frac{v_{13}}{E_{1}} & 0 & 0 & 0 \tag{2.70}\\
-\frac{v_{21}}{E_{2}} & \frac{1}{E_{2}} & -\frac{v_{23}}{E_{2}} & 0 & 0 & 0 \\
-\frac{v_{31}}{E_{3}} & -\frac{v_{32}}{E_{3}} & \frac{1}{E_{3}} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{G_{23}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{G_{31}} & 0 \\
0 & 0 & 0 & 0 & 0 &
\end{array}\right]
$$

Inversion of Equation (2.70) would be the compliance matrix [C] and is given by

$$
[C]=\left[\begin{array}{cccccc}
\frac{1-v_{23} v_{32}}{E_{2} E_{3} \Delta} & \frac{v_{21}+v_{23} v_{31}}{E_{2} E_{3} \Delta} & \frac{v_{31}+v_{21} v_{32}}{E_{2} E_{3} \Delta} & 0 & 0 & 0 \tag{2.71}\\
\frac{v_{21}+v_{23} v_{31}}{E_{2} E_{3} \Delta} & \frac{1-v_{13} v_{31}}{E_{1} E_{3} \Delta} & \frac{v_{32}+v_{12} v_{31}}{E_{1} E_{3} \Delta} & 0 & 0 & 0 \\
\frac{v_{31}+v_{21} v_{32}}{E_{2} E_{3} \Delta} & \frac{v_{32}+v_{12} v_{31}}{E_{1} E_{3} \Delta} & \frac{1-v_{12} v_{21}}{E_{1} E_{2} \Delta} & 0 & 0 & 0 \\
0 & 0 & 0 & G_{23} & 0 & 0 \\
0 & 0 & 0 & 0 & G_{31} & 0 \\
0 & 0 & 0 & 0 & 0 & G_{12}
\end{array}\right],
$$

where

$$
\begin{equation*}
\Delta=\left(1-v_{12} v_{21}-v_{23} v_{32}-v_{13} v_{31}-2 v_{21} v_{32} v_{13}\right) /\left(E_{1} E_{2} E_{3}\right) . \tag{2.72}
\end{equation*}
$$

Although nine independent elastic constants are in the compliance matrix [S] and, correspondingly, in the stiffness matrix [C] for orthotropic materials, constraints on the values of these constants exist. Based on the first law of thermodynamics, the stiffness and compliance matrices must be positive definite. Thus, the diagonal terms of [C] and [S] in Equation (2.71) and Equation (2.70), respectively, need to be positive. From the diagonal elements of the compliance matrix [S], this gives

$$
\begin{equation*}
E_{1}>0, E_{2}>0, E_{3}>0, G_{12}>0, G_{23}>0, G_{31}>0 \tag{2.73}
\end{equation*}
$$

and, from the diagonal elements of the stiffness matrix [C], gives

$$
\begin{gather*}
1-v_{23} v_{32}>0,1-v_{31} v_{13}>0,1-v_{12} v_{21}>0, \tag{2.74}\\
\Delta=1-v_{12} v_{21}-v_{23} v_{32}-v_{31} v_{13}-2 v_{13} v_{21} v_{32}>0
\end{gather*}
$$

Using the reciprocal relations given by Equation (2.67) through Equation (2.69),

$$
\frac{v_{i j}}{E_{i}}=\frac{v_{j i}}{E_{j}} \text { for } i \neq j \text { and } i, j=1,2,3
$$

For example, because

$$
1-v_{12} v_{21}>0,
$$

then

$$
\begin{gather*}
v_{12}<\frac{1}{v_{21}}=\frac{E_{1}}{E_{2}} \frac{1}{v_{12}} \\
\left|v_{12}\right|<\left|\frac{E_{1}}{E_{2}} \frac{1}{v_{12}}\right| \\
\left|v_{12}\right|<\sqrt{\frac{E_{1}}{E_{2}}} \tag{2.75a}
\end{gather*}
$$

Similarly, five other such relationships can be developed to give

$$
\begin{align*}
& \left|v_{21}\right|<\sqrt{\frac{E_{2}}{E_{1}}} \tag{2.75b}\\
& \left|v_{32}\right|<\sqrt{\frac{E_{3}}{E_{2}}} \tag{2.75c}\\
& \left|v_{23}\right|<\sqrt{\frac{E_{2}}{E_{3}}} \tag{2.75d}\\
& \left|v_{31}\right|<\sqrt{\frac{E_{3}}{E_{1}}} \tag{2.75e}\\
& \left|v_{13}\right|<\sqrt{\frac{E_{1}}{E_{3}}} .
\end{align*}
$$

These restrictions on the elastic moduli are importan

Example 2.5

Find the compliance and stiffness matrix for a graphite/epoxy lamina. The material properties are given as

$$
\begin{gathered}
E_{1}=181 \mathrm{GPa}, E_{2}=10.3 \mathrm{GPa}, E_{3}=10.3 \mathrm{GPa} \\
v_{12}=0.28, v_{23}=0.60, v_{13}=0.27 \\
G_{12}=7.17 \mathrm{GPa}, G_{23}=3.0 \mathrm{GPa}, G_{31}=7.00 \mathrm{GPa} .
\end{gathered}
$$

Solution

$$
\begin{gathered}
S_{11}=\frac{1}{E_{1}}=\frac{1}{181 \times 10^{9}}=5.525 \times 10^{-12} \mathrm{~Pa}^{-1} \\
S_{22}=\frac{1}{E_{2}}=\frac{1}{10.3 \times 10^{9}}=9.709 \times 10^{-11} \mathrm{~Pa}^{-1} \\
S_{33}=\frac{1}{E_{3}}=\frac{1}{10.3 \times 10^{9}}=9.709 \times 10^{-11} \mathrm{~Pa}^{-1} \\
S_{12}=-\frac{v_{12}}{E_{1}}=-\frac{0.28}{181 \times 10^{9}}=-1.547 \times 10^{-12} \mathrm{~Pa}^{-1} \\
S_{13}=-\frac{v_{13}}{E_{1}}=-\frac{0.27}{181 \times 10^{9}}=-1.492 \times 10^{-12} \mathrm{~Pa}^{-1} \\
S_{23}=-\frac{v_{23}}{E_{2}}=-\frac{0.6}{10.3 \times 10^{9}}=-5.825 \times 10^{-11} \mathrm{~Pa}^{-1} \\
S_{44}=\frac{1}{G_{23}}=\frac{1}{3 \times 10^{9}}=3.333 \times 10^{-10} \mathrm{~Pa}^{-1} \\
S_{55}=\frac{1}{G_{31}}=\frac{1}{7 \times 10^{9}}=1.429 \times 10^{-10} \mathrm{~Pa}^{2}
\end{gathered}
$$

$$
S_{66}=\frac{1}{G_{12}}=\frac{1}{7.17 \times 10^{9}}=1.395 \times 10^{-10} \mathrm{~Pa}^{-1} .
$$

Thus, the compliance matrix for the orthotropic lamina is given by

$$
\begin{gathered}
{[S]=} \\
{\left[\begin{array}{cccccc}
5.525 \times 10^{-12} & -1.547 \times 10^{-12} & -1.492 \times 10^{-12} & 0 & 0 & 0 \\
-1.547 \times 10^{-12} & 9.709 \times 10^{-11} & -5.825 \times 10^{-11} & 0 & 0 & 0 \\
-1.492 \times 10^{-12} & -5.825 \times 10^{-11} & 9.709 \times 10^{-11} & 0 & 0 & 0 \\
0 & 0 & 0 & 3.333 \times 10^{-10} & 0 & 0 \\
0 & 0 & 0 & 0 & 1.429 \times 10^{-10} & 0 \\
0 & 0 & 0 & 0 & 0 & 1.395 \times 10^{-10}
\end{array}\right]{P a^{-1}}^{0}}
\end{gathered}
$$

The stiffness matrix can be found by inverting the compliance matrix and is given by
$[C]=[S]^{-1}$
$[C]=$
$\left[\begin{array}{cccccc}0.1850 \times 10^{12} & 0.7269 \times 10^{10} & 0.7204 \times 10^{10} & 0 & 0 & 0 \\ 0.7269 \times 10^{10} & 0.1638 \times 10^{11} & 0.9938 \times 10^{10} & 0 & 0 & 0 \\ 0.7204 \times 10^{10} & 0.9938 \times 10^{10} & 0.1637 \times 10^{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.3000 \times 10^{10} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.6998 \times 10^{10} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.7168 \times 10^{10}\end{array}\right] P a=$

The preceding stiffness matrix [C] can also be found directly by using Equation (2.71).

2.4 Hooke's Law for a Two-Dimensional Unidirectional Lamina

2.4.1 Plane Stress Assumption

A thin plate is a prismatic member having a small thickness, and it is the case for a typical lamina. If a plate is thin and there are r it can be considered to be under plane stress (Figure 2. the plate are free from external loads se the plate is thin, these three stresse

FIGURE 2.17
Plane stress conditions for a thin plate.
assumed to vary little from the magnitude of stresses at the top and the bottom surfaces. Thus, they can be assumed to be zero within the plate also. A lamina is thin and, if no out-of-plane loads are applied, one can assume that it is under plane stress. This assumption then reduces the three-dimensional stress-strain equations to two-dimensional stress-strain equations.

2.4.2 Reduction of Hooke's Law in Three Dimensions to Two Dimensions

A unidirectional lamina falls under the orthotropic material category. If the lamina is thin and does not carry any out-of-plane loads, one can assume plane stress conditions for the lamina. Therefore, taking Equation (2.26) and Equation (2.39) and assuming $\sigma_{3}=0, \tau_{23}=0$, and $\tau_{31}=0$, then

$$
\begin{gather*}
\varepsilon_{3}=S_{13} \sigma_{1}+S_{23} \sigma_{2} \\
\gamma_{23}=\gamma_{31}=0 \tag{2.76a,b}
\end{gather*}
$$

The normal strain, ε_{3}, is not an independent strain because it is a function of the other two normal strains, ε_{1} and ε_{2}. Therefore, the normal strain, ε_{3}, can be omitted from the stress-strain relationship (2.39). Also, the shearing strains, γ_{23} and γ_{31}, can be omitted because they are zero. Equation (2.39) for an orthotropic plane stress problem can then be written as

$$
\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12}
\end{array}\right]=\left[\begin{array}{ccc}
S_{11} & S_{12} & 0 \\
S_{12} & S_{22} & 0 \\
0 & 0 & S_{66}
\end{array}\right]\left[\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\tau_{12}
\end{array}\right],
$$

where $S_{i j}$ are the elements of the compliance matrix. Note the four independent compliance elements in the matrix.

Inverting Equation (2.77) gives the stress-strain relationship as

$$
\left[\begin{array}{c}
\sigma_{1} \tag{2.78}\\
\sigma_{2} \\
\tau_{12}
\end{array}\right]=\left[\begin{array}{ccc}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12}
\end{array}\right]
$$

where $Q_{i j}$ are the reduced stiffness coefficients, which are related to the compliance coefficients as

$$
\begin{gather*}
Q_{11}=\frac{S_{22}}{S_{11} S_{22}-S_{12}^{2}}, \\
Q_{12}=-\frac{S_{12}}{S_{11} S_{22}-S_{12}^{2}}, \tag{2.79a-d}\\
Q_{22}=\frac{S_{11}}{S_{11} S_{22}-S_{12}^{2}} \\
Q_{66}=\frac{1}{S_{66}}
\end{gather*}
$$

Note that the elements of the reduced stiffness matrix, $Q_{i j}$, are not the same as the elements of the stiffness matrix, $C_{i j}$ (see Exercise 2.13).

2.4.3 Relationship of Compliance and Stiffness Matrix to Engineering Elastic Constants of a Lamina

Equation (2.77) and Equation (2.78) show the relationship of stress and strain through the compliance [S] and reduced stiffness [Q] matrices. However, stress and strains are generally related through engineering elastic constants. For a unidirectional lamina, these engineering elastics constants are
$E_{1}=$ longitudinal Young's modulus (in direction 1)
$E_{2}=$ transverse Young's modulus (in direction 2)
$v_{12}=$ major Poisson's ratio, where the general Poisson's ratio, v_{ij} is defined as the ratio of the negative of the normal strain in direstion j to the normal strain in direction i, when the or applied in direction i

UNIT-V

$$
S_{66}=\frac{1}{G_{12}}=\frac{1}{7.17 \times 10^{9}}=1.395 \times 10^{-10} \mathrm{~Pa}^{-1} .
$$

Thus, the compliance matrix for the orthotropic lamina is given by

$$
\begin{gathered}
{[S]=} \\
{\left[\begin{array}{cccccc}
5.525 \times 10^{-12} & -1.547 \times 10^{-12} & -1.492 \times 10^{-12} & 0 & 0 & 0 \\
-1.547 \times 10^{-12} & 9.709 \times 10^{-11} & -5.825 \times 10^{-11} & 0 & 0 & 0 \\
-1.492 \times 10^{-12} & -5.825 \times 10^{-11} & 9.709 \times 10^{-11} & 0 & 0 & 0 \\
0 & 0 & 0 & 3.333 \times 10^{-10} & 0 & 0 \\
0 & 0 & 0 & 0 & 1.429 \times 10^{-10} & 0 \\
0 & 0 & 0 & 0 & 0 & 1.395 \times 10^{-10}
\end{array}\right]{P a^{-1}}^{0}}
\end{gathered}
$$

The stiffness matrix can be found by inverting the compliance matrix and is given by
$[C]=[S]^{-1}$
$[C]=$
$\left[\begin{array}{cccccc}0.1850 \times 10^{12} & 0.7269 \times 10^{10} & 0.7204 \times 10^{10} & 0 & 0 & 0 \\ 0.7269 \times 10^{10} & 0.1638 \times 10^{11} & 0.9938 \times 10^{10} & 0 & 0 & 0 \\ 0.7204 \times 10^{10} & 0.9938 \times 10^{10} & 0.1637 \times 10^{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.3000 \times 10^{10} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.6998 \times 10^{10} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.7168 \times 10^{10}\end{array}\right] P a=$

The preceding stiffness matrix [C] can also be found directly by using Equation (2.71).

2.4 Hooke's Law for a Two-Dimensional Unidirectional Lamina

2.4.1 Plane Stress Assumption

A thin plate is a prismatic member having a small thickness, and it is the case for a typical lamina. If a plate is thin and there are r it can be considered to be under plane stress (Figure 2. the plate are free from external loads se the plate is thin, these three stresse

FIGURE 2.17
Plane stress conditions for a thin plate.
assumed to vary little from the magnitude of stresses at the top and the bottom surfaces. Thus, they can be assumed to be zero within the plate also. A lamina is thin and, if no out-of-plane loads are applied, one can assume that it is under plane stress. This assumption then reduces the three-dimensional stress-strain equations to two-dimensional stress-strain equations.

2.4.2 Reduction of Hooke's Law in Three Dimensions to Two Dimensions

A unidirectional lamina falls under the orthotropic material category. If the lamina is thin and does not carry any out-of-plane loads, one can assume plane stress conditions for the lamina. Therefore, taking Equation (2.26) and Equation (2.39) and assuming $\sigma_{3}=0, \tau_{23}=0$, and $\tau_{31}=0$, then

$$
\begin{gather*}
\varepsilon_{3}=S_{13} \sigma_{1}+S_{23} \sigma_{2} \\
\gamma_{23}=\gamma_{31}=0 \tag{2.76a,b}
\end{gather*}
$$

The normal strain, ε_{3}, is not an independent strain because it is a function of the other two normal strains, ε_{1} and ε_{2}. Therefore, the normal strain, ε_{3}, can be omitted from the stress-strain relationship (2.39). Also, the shearing strains, γ_{23} and γ_{31}, can be omitted because they are zero. Equation (2.39) for an orthotropic plane stress problem can then be written as

$$
\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12}
\end{array}\right]=\left[\begin{array}{ccc}
S_{11} & S_{12} & 0 \\
S_{12} & S_{22} & 0 \\
0 & 0 & S_{66}
\end{array}\right]\left[\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\tau_{12}
\end{array}\right],
$$

where $S_{i j}$ are the elements of the compliance matrix. Note the four independent compliance elements in the matrix.

Inverting Equation (2.77) gives the stress-strain relationship as

$$
\left[\begin{array}{c}
\sigma_{1} \tag{2.78}\\
\sigma_{2} \\
\tau_{12}
\end{array}\right]=\left[\begin{array}{ccc}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12}
\end{array}\right]
$$

where $Q_{i j}$ are the reduced stiffness coefficients, which are related to the compliance coefficients as

$$
\begin{gather*}
Q_{11}=\frac{S_{22}}{S_{11} S_{22}-S_{12}^{2}}, \\
Q_{12}=-\frac{S_{12}}{S_{11} S_{22}-S_{12}^{2}}, \tag{2.79a-d}\\
Q_{22}=\frac{S_{11}}{S_{11} S_{22}-S_{12}^{2}} \\
Q_{66}=\frac{1}{S_{66}}
\end{gather*}
$$

Note that the elements of the reduced stiffness matrix, $Q_{i j}$, are not the same as the elements of the stiffness matrix, $C_{i j}$ (see Exercise 2.13).

2.4.3 Relationship of Compliance and Stiffness Matrix to Engineering Elastic Constants of a Lamina

Equation (2.77) and Equation (2.78) show the relationship of stress and strain through the compliance [S] and reduced stiffness [Q] matrices. However, stress and strains are generally related through engineering elastic constants. For a unidirectional lamina, these engineering elastics constants are
$E_{1}=$ longitudinal Young's modulus (in direction 1)
$E_{2}=$ transverse Young's modulus (in direction 2)
$v_{12}=$ major Poisson's ratio, where the general Poisson's ratio, v_{ij} is defined as the ratio of the negative of the normal strain in direstion j to the normal strain in direction i, when the or applied in direction i

FIGURE 2.18
Application of stresses to find engineering constants of a unidirectional lamina.
Experimentally, the four independent engineering elastic constants are measured as follows and can be related to the four independent elements of the compliance matrix [S] of Equation (2.77).

- Apply a pure tensile load in direction 1 (Figure 2.18a), that is,

$$
\sigma_{1} \neq 0, \sigma_{2}=0, \tau_{12}=0
$$

Equation (2.77),

$$
\begin{align*}
\varepsilon_{1} & =S_{11} \sigma_{1} \\
\varepsilon_{2} & =S_{12} \sigma_{1} \tag{2.81a-c}\\
\gamma_{12} & =0
\end{align*}
$$

By definition, if the only nonzero stress is σ_{1}, as is the case here, then

$$
\begin{gather*}
E_{1} \equiv \frac{\sigma_{1}}{\varepsilon_{1}}=\frac{1}{S_{11}}, \tag{2.82}\\
\nu_{12} \equiv-\frac{\varepsilon_{2}}{\varepsilon_{1}}=-\frac{S_{12}}{S_{11}} . \tag{2.83}
\end{gather*}
$$

- Apply a pure tensile load in direction 2 (Figure 2.18b), that is

$$
\begin{equation*}
\sigma_{1}=0, \sigma_{2} \neq 0, \tau_{12}=0 \tag{2.84}
\end{equation*}
$$

Then, from Equation (2.77),

$$
\begin{align*}
\varepsilon_{1} & =S_{12} \sigma_{2} \\
\varepsilon_{2} & =S_{22} \sigma_{2} \tag{2.85a-c}\\
\gamma_{12} & =0
\end{align*}
$$

By definition, if the only nonzero stress is σ_{2}, as is the case here, then

$$
\begin{gather*}
E_{2} \equiv \frac{\sigma_{2}}{\varepsilon_{2}}=\frac{1}{S_{22}}, \tag{2.86}\\
v_{21} \equiv-\frac{\varepsilon_{1}}{\varepsilon_{2}}=-\frac{S_{12}}{S_{22}} . \tag{2.87}
\end{gather*}
$$

The v_{21} term is called the minor Poisson's ratio. From Equation (2.82), Equation (2.83), Equation (2.86), and Equation (2.87), we have the reciprocal relationship

$$
\frac{v_{12}}{E_{1}}=\frac{v_{21}}{E_{2}}
$$

- Apply a pure shear stress in the plane 1-2 (Figure 2.18c) - that is,

$$
\begin{equation*}
\sigma_{1}=0, \sigma_{2}=0 \text { and } \tau_{12} \neq 0 \tag{2.89}
\end{equation*}
$$

Then, from Equation (2.77),

$$
\begin{gather*}
\varepsilon_{1}=0, \\
\varepsilon_{2}=0 \\
\gamma_{12}=S_{66} \tau_{12} . \tag{2.90a-c}
\end{gather*}
$$

By definition, if τ_{12} is the only nonzero stress, as is the case here, then

$$
\begin{equation*}
G_{12} \equiv \frac{\tau_{12}}{\gamma_{12}}=\frac{1}{S_{66}} \tag{2.91}
\end{equation*}
$$

Thus, we have proved that

$$
\begin{align*}
& S_{11}=\frac{1}{E_{1}} \\
& S_{12}=-\frac{v_{12}}{E_{1}}, \\
& S_{22}=\frac{1}{E_{2}} \\
& S_{66}=\frac{1}{G_{12}} \tag{2.92a-d}
\end{align*}
$$

Also, the stiffness coefficients $Q_{i j}$ are related to the engineering constants through Equation (2.98) and Equation (2.92) as

$$
Q_{11}=\frac{E_{1}}{1-v_{21} v_{12}},
$$

$$
\begin{gather*}
Q_{12}=\frac{v_{12} E_{2}}{1-v_{21} v_{12}}, \\
Q_{22}=\frac{E_{2}}{1-v_{21} v_{12}}, \text { and } \\
Q_{66}=G_{12} . \tag{2.93a-d}
\end{gather*}
$$

Equation (2.77), Equation (2.78), Equation (2.92), and Equation (2.93) relate stresses and strains through any of the following combinations of four constants.

$$
\begin{aligned}
& Q_{11}, Q_{12}, Q_{22}, Q_{66} \text { or } \\
& S_{11}, S_{12}, S_{22}, S_{66} \text { or } \\
& E_{1}, E_{2}, v_{12}, G_{12}
\end{aligned}
$$

The unidirectional lamina is a specially orthotropic lamina because normal stresses applied in the 1-2 direction do not result in any shearing strains in the 1-2 plane because $Q_{16}=Q_{26}=0=S_{16}=S_{26}$. Also, the shearing stresses applied in the 1-2 plane do not result in any normal strains in the 1 and 2 directions because $Q_{16}=Q_{26}=0=S_{16}=S_{26}$.

A woven composite with its weaves perpendicular to each other and short fiber composites with fibers arranged perpendicularly to each other or aligned in one direction also are specially orthotropic. Thus, any discussion in this chapter or in Chapter 4 ("Macromechanics of a Laminate") is valid for such a lamina as well. Mechanical properties of some typical unidirectional lamina are given in Table 2.1 and Table 2.2.

Example 2.6

For a graphite/epoxy unidirectional lamina, find the following

1. Compliance matrix
2. Minor Poisson's ratio
3. Reduced stiffness matrix
4. Strains in the $1-2$ coordinate system if the applied stresses (Figure 2.19) are

$$
\sigma_{1}=2 \mathrm{MPa}, \sigma_{2}=-3 \mathrm{MPa}, \tau_{12}=4 \mathrm{MPa}
$$

TABLE 2.1
Typical Mechanical Properties of a Unidirectional Lamina (SI System of Units)

Property	Symbol	Units	Glass/ epoxy	Boron/ epoxy	Graphite/ epoxy
Fiber volume fraction	V_{f}		0.45	0.50	0.70
Longitudinal elastic modulus	E_{1}	GPa	38.6	204	181
Transverse elastic modulus	E_{2}	GPa	8.27	18.50	10.30
Major Poisson's ratio	V_{12}		0.26	0.23	0.28
Shear modulus	G_{12}	GPa	4.14	5.59	7.17
Ultimate longitudinal tensile strength	$\left(\sigma_{1}^{T}\right)_{u l t}$	MPa	1062	1260	1500
Ultimate longitudinal compressive strength	$\left(\sigma_{1}^{C}\right)_{\text {ult }}$	MPa	610	2500	1500
Ultimate transverse tensile strength	$\left(\sigma_{2}^{T}\right)_{u l t}$	MPa	31	61	40
Ultimate transverse compressive strength	$\left(\sigma_{2}^{C}\right)_{u l t}$	MPa	118	202	246
Ultimate in-plane shear strength	$\left(\tau_{12}\right)_{u l t}$	MPa	72	67	68
Longitudinal coefficient of thermal expansion	α_{1}	$\mu \mathrm{m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$	8.6	6.1	0.02
Transverse coefficient of thermal expansion	α_{2}	$\mu \mathrm{m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$	22.1	30.3	22.5
Longitudinal coefficient of moisture expansion	β_{1}	$\mathrm{m} / \mathrm{m} / \mathrm{kg} / \mathrm{kg}$	0.00	0.00	0.00
Transverse coefficient of moisture expansion	β_{2}	$\mathrm{m} / \mathrm{m} / \mathrm{kg} / \mathrm{kg}$	0.60	0.60	0.60

Source: Tsai, S.W. and Hahn, H.T., Introduction to Composite Materials, CRC Press, Boca Raton, FL, Table 1.7, p. 19; Table 7.1, p. 292; Table 8.3, p. 344. Reprinted with permission.

Solution

From Table 2.1, the engineering elastic constants of the unidirectional graphite/epoxy lamina are

$$
E_{1}=181 G P a, E_{2}=10.3 G P a, v_{12}=0.28, G_{12}=7.17 \mathrm{GPa} .
$$

1. Using Equation (2.92), the compliance matrix elements are

$$
S_{11}=\frac{1}{181 \times 10^{9}}=0.5525 \times 10^{-11} \mathrm{~Pa}^{-1},
$$

$$
S_{12}=-\frac{0.28}{181 \times 10^{9}}=-0.1547 \times 10^{-11} \mathrm{~Pa}^{-}
$$

TABLE 2.2
Typical Mechanical Properties of a Unidirectional Lamina (USCS System of Units)

Property	Symbol	Units	Glass/ epoxy	Boron/ epoxy	Graphite/ epoxy
Fiber volume fraction	V_{f}	-	0.45	0.50	0.70
Longitudinal elastic modulus	E_{1}	Msi	5.60	29.59	26.25
Transverse elastic modulus	E_{2}	Msi	1.20	2.683	1.49
Major Poisson's ratio	v_{12}		0.26	0.23	0.28
Shear modulus	G_{12}	Msi	0.60	0.811	1.040
Ultimate longitudinal tensile strength	$\left(\sigma_{1}^{T}\right)_{u l t}$	ksi	154.03	182.75	217.56
Ultimate longitudinal compressive strength	$\left(\sigma_{1}^{C}\right)_{u l t}$	ksi	88.47	362.6	217.56
Ultimate transverse tensile strength	$\left(\sigma_{2}^{T}\right)_{u l t}$	ksi	4.496	8.847	5.802
Ultimate transverse compressive strength	$\left(\sigma_{2}^{C}\right)_{u l t}$	ksi	17.12	29.30	35.68
Ultimate in-plane shear strength	$\left(\tau_{12}\right)_{u l t}$	ksi	10.44	9.718	9.863
Longitudinal coefficient of thermal expansion	α_{1}	$\mu \mathrm{in} . / \mathrm{in} . /{ }^{\circ} \mathrm{F}$	4.778	3.389	0.0111
Transverse coefficient of thermal expansion	α_{2}	$\mu \mathrm{in} . / \mathrm{in} . /{ }^{\circ} \mathrm{F}$	12.278	16.83	12.5
Longitudinal coefficient of moisture expansion	β_{1}	in./in./lb/lb	0.00	0.00	0.00
Transverse coefficient of moisture expansion	β_{2}	in./in./lb/lb	0.60	0.60	0.60

Source: Tsai, S.W. and Hahn, H.T., Introduction to Composite Materials, CRC Press, Boca Raton, FL, Table 1.7, p. 19; Table 7.1, p. 292; Table 8.3, p. 344. USCS system used for tables reprinted with permission.

$$
\begin{aligned}
& S_{22}=\frac{1}{10.3 \times 10^{9}}=0.9709 \times 10^{-10} \mathrm{~Pa}^{-1}, \\
& S_{66}=\frac{1}{7.17 \times 10^{9}}=0.1395 \times 10^{-9} \mathrm{~Pa}^{-1} .
\end{aligned}
$$

2. Using the reciprocal relationship (2.88), the minor Poisson's ratio is

$$
v_{21}=\frac{0.28}{181 \times 10^{9}} \times\left(10.3 \times 10^{9}\right)=0.01593
$$

3. Using Equation (2.93), the reduced stiffness matri

FIGURE 2.19
Applied stresses in a unidirectional lamina in Example 2.6.

$$
\begin{aligned}
& Q_{11}=\frac{181 \times 10^{9}}{1-(0.28)(0.01593)}=181.8 \times 10^{9} \mathrm{~Pa}, \\
& Q_{12}=\frac{(0.28)\left(10.3 \times 10^{9}\right)}{1-(0.28)(0.01593)}=2.897 \times 10^{9} \mathrm{~Pa}, \\
& Q_{22}=\frac{10.3 \times 10^{9}}{1-(0.28)(0.01593)}=10.35 \times 10^{9} \mathrm{~Pa}, \\
& Q_{66}=7.17 \times 10^{9} \mathrm{~Pa} .
\end{aligned}
$$

The reduced stiffness matrix $[Q]$ could also be obtained by inverting the compliance matrix [S] of part 1:
$[Q]=[S]^{-1}=\left[\begin{array}{ccc}0.5525 \times 10^{-11} & -0.1547 \times 10^{-11} & \\ -0.1547 \times 10^{-11} & 0.9709 \times 10^{-10} & \\ 0 & 0 & 0\end{array}\right.$

$$
=\left[\begin{array}{ccc}
181.8 \times 10^{9} & 2.897 \times 10^{9} & 0 \\
2.897 \times 10^{9} & 10.35 \times 10^{9} & 0 \\
0 & 0 & 7.17 \times 10^{9}
\end{array}\right] P a .
$$

4. Using Equation (2.77), the strains in the 1-2 coordinate system are

$$
\begin{gathered}
{\left[\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12}
\end{array}\right]=\left[\begin{array}{ccc}
0.5525 \times 10^{-11} & -0.1547 \times 10^{-11} & 0 \\
-0.1547 \times 10^{-11} & 0.9709 \times 10^{-10} & 0 \\
0 & 0 & 0.1395 \times 10^{-9}
\end{array}\right]\left[\begin{array}{c}
2 \times 10^{6} \\
-3 \times 10^{6} \\
4 \times 10^{6}
\end{array}\right]} \\
=\left[\begin{array}{c}
15.69 \\
-294.4 \\
557.9
\end{array}\right]\left(10^{-6}\right) .
\end{gathered}
$$

Thus, the strains in the local axes are

$$
\begin{aligned}
& \varepsilon_{1}=15.69 \frac{\mu \mathrm{~m}}{\mathrm{~m}}, \\
& \varepsilon_{2}=294.4 \frac{\mu \mathrm{~m}}{\mathrm{~m}}, \\
& \gamma_{12}=557.9 \frac{\mu \mathrm{~m}}{\mathrm{~m}} .
\end{aligned}
$$

2.5 Hooke's Law for a Two-Dimensional Angle Lamina

Generally, a laminate does not consist only of unidirectional laminae because of their low stiffness and strength properties in the transverse direction. Therefore, in most laminates, some laminae are placed at an angle. It is thus necessary to develop the stress-strain relationship for an angle lamina.

The coordinate system used for showing an angle 1 Figure 2.20. The axes in the 1-2 coordinate system are …th~m-1~……es. The direction 1 is parallel to the fit r to the fibers. In some literature, dirt

FIGURE 2.20
Local and global axes of an angle lamina.
the longitudinal direction L and the direction 2 is called the transverse direction T. The axes in the $x-y$ coordinate system are called the global axes or the off-axes. The angle between the two axes is denoted by an angle θ. The stress-strain relationship in the 1-2 coordinate system has already been established in Section 2.4 and we are now going to develop the stress-strain equations for the $x-y$ coordinate system.
The global and local stresses in an angle lamina are related to each other through the angle of the lamina, θ (Appendix B):

$$
\left[\begin{array}{c}
\sigma_{x} \tag{2.94}\\
\sigma_{y} \\
\tau_{x y}
\end{array}\right]=[T]^{-1}\left[\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\tau_{12}
\end{array}\right],
$$

where [T] is called the transformation matrix and is defined as

$$
[T]^{-1}=\left[\begin{array}{ccc}
c^{2} & s^{2} & -2 s c \tag{2.95}\\
s^{2} & c^{2} & 2 s c \\
s c & -s c & c^{2}-s^{2}
\end{array}\right],
$$

$$
\begin{gather*}
{[T]=\left[\begin{array}{ccc}
c^{2} & s^{2} & 2 s c \\
s^{2} & c^{2} & -2 s c \\
-s c & s c & c^{2}-s^{2}
\end{array}\right],} \tag{2.96}\\
c=\operatorname{Cos}(\theta) \\
s=\operatorname{Sin}(\theta) \tag{2.97a,b}
\end{gather*}
$$

Using the stress-strain Equation (2.78) in the local axes, Equation (2.94) can be written as

$$
\left[\begin{array}{c}
\sigma_{x} \tag{2.98}\\
\sigma_{y} \\
\tau_{x y}
\end{array}\right]=[T]^{-1}[Q]\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12}
\end{array}\right]
$$

The global and local strains are also related through the transformation matrix (Appendix B):

$$
\left[\begin{array}{c}
\varepsilon_{1} \tag{2.99}\\
\varepsilon_{2} \\
\gamma_{12} / 2
\end{array}\right]-[T]\left[\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y} / 2
\end{array}\right]
$$

which can be rewritten as

$$
\left[\begin{array}{c}
\varepsilon_{1} \tag{2.100}\\
\varepsilon_{2} \\
\gamma_{12}
\end{array}\right]=[R][T][R]^{-1}\left[\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right],
$$

where $[R]$ is the Reuter matrix ${ }^{3}$ and is defined as

$$
[R]=\left[\begin{array}{lll}
1 & 0 & 0 \tag{2.101}\\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

$$
\left[\begin{array}{c}
\sigma_{x} \tag{2.102}\\
\sigma_{y} \\
\tau_{x y}
\end{array}\right]=[T]^{-1}[Q][R][T][R]^{-1}\left[\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right] .
$$

On carrying the multiplication of the first five matrices on the right-hand side of Equation (2.102),

$$
\left[\begin{array}{c}
\sigma_{x} \tag{2.103}\\
\sigma_{y} \\
\tau_{x y}
\end{array}\right]=\left[\begin{array}{lll}
\bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\
\bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\
\bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66}
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right],
$$

where $\bar{Q}_{i j}$ are called the elements of the transformed reduced stiffness matrix [\bar{Q}] and are given by

$$
\begin{gather*}
\bar{Q}_{11}=Q_{11} c^{4}+Q_{22} s^{4}+2\left(Q_{12}+2 Q_{66}\right) s^{2} c^{2}, \\
\bar{Q}_{12}=\left(Q_{11}+Q_{22}-4 Q_{66}\right) s^{2} c^{2}+Q_{12}\left(c^{4}+s^{2}\right), \\
\bar{Q}_{22}=Q_{11} s^{4}+Q_{22} c^{4}+2\left(Q_{12}+2 Q_{66}\right) s^{2} c^{2}, \\
\bar{Q}_{16}=\left(Q_{11}-Q_{12}-2 Q_{66}\right) c^{3} s-\left(Q_{22}-Q_{12}-2 Q_{66}\right) s^{3} c, \\
\bar{Q}_{26}=\left(Q_{11}-Q_{12}-2 Q_{66}\right) c s^{3}-\left(Q_{22}-Q_{12}-2 Q_{66}\right) c^{3} s, \\
\bar{Q}_{66}=\left(Q_{11}+Q_{22}-2 Q_{12}-2 Q_{66}\right) s^{2} c^{2}+Q_{66}\left(s^{4}+c^{4}\right) . \tag{2.104a-f}
\end{gather*}
$$

Note that six elements are in the [\bar{Q}] matrix. However, by looking at Aquation (2.104), it can be seen that they are just functions of the four stiffness elements, Q_{11}, Q_{12}, Q_{22}, and Q_{66}, and the angle of the lamina, θ.
Inverting Equation (2.103) gives

$$
\left[\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right]=\left[\begin{array}{lll}
\bar{S}_{11} & \bar{S}_{12} & \bar{S}_{16} \\
\bar{S}_{12} & \bar{S}_{22} & \bar{S}_{26} \\
\bar{S}_{16} & \bar{S}_{26} & \bar{S}_{66}
\end{array}\right]\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{x y}
\end{array}\right]
$$

where $S_{i j}$ are the elements of the transformed reduced compliance matrix and are given by

$$
\begin{gather*}
\bar{S}_{11}=S_{11} c^{4}+\left(2 S_{12}+S_{66}\right) s^{2} c^{2}+S_{22} s^{4} \\
\bar{S}_{12}=S_{12}\left(s^{4}+c^{4}\right)+\left(S_{11}+S_{22}-S_{66}\right) s^{2} c^{2}, \\
\bar{S}_{22}=S_{11} s^{4}+\left(2 S_{12}+S_{66}\right) s^{2} c^{2}+S_{22} c^{4} \\
\bar{S}_{16}=\left(2 S_{11}-2 S_{12}-S_{66}\right) s c^{3}-\left(2 S_{22}-2 S_{12}-S_{66}\right) s^{3} c, \\
\bar{S}_{26}=\left(2 S_{11}-2 S_{12}-S_{66}\right) s^{3} c-\left(2 S_{22}-2 S_{12}-S_{66}\right) s c^{3}, \\
\bar{S}_{66}=2\left(2 S_{11}+2 S_{22}-4 S_{12}-S_{66}\right) s^{2} c^{2}+S_{66}\left(s^{4}+c^{4}\right) \tag{2.106a-f}
\end{gather*}
$$

From Equation (2.77) and Equation (2.78), for a unidirectional lamina loaded in the material axes directions, no coupling occurs between the normal and shearing terms of strains and stresses. However, for an angle lamina, from Equation (2.103) and Equation (2.105), coupling takes place between the normal and shearing terms of strains and stresses. If only normal stresses are applied to an angle lamina, the shear strains are nonzero; if only shearing stresses are applied to an angle lamina, the normal strains are nonzero. Therefore, Equation (2.103) and Equation (2.105) are stress-strain equations for what is called a generally orthotropic lamina.

Example 2.7

Find the following for a 60° angle lamina (Figure 2.21) of graphite/epoxy. Use the properties of unidirectional graphite/epoxy lamina from Table 2.1.

1. Transformed compliance matrix
2. Transformed reduced stiffness matrix

If the applied stress is $\sigma_{x}=2 \mathrm{MPa}, \sigma_{y}=-3 \mathrm{MPa}$, and $\tau_{x y}=4 \mathrm{MPa}$, also find
3. Global strains
4. Local strains
5. Local stresses

FIGURE 2.21
Applied stresses to an angle lamina in Example 2.7.
8. Principal strains
9. Maximum shear strain

Solution

$$
\begin{aligned}
& c=\operatorname{Cos}\left(60^{\circ}\right)=0.500 \\
& s=\operatorname{Sin}\left(60^{\circ}\right)=0.866
\end{aligned}
$$

1. From Example 2.6,

$$
\begin{aligned}
& S_{11}=0.5525 \times 10^{-11} \frac{1}{P a} \\
& S_{22}=0.9709 \times 10^{-10} \frac{1}{P a} \\
& S_{12}=-0.1547 \times 10^{-11} \frac{1}{P a}, \\
& S_{66}=0.1395 \times 10^{-9} \frac{1}{P a}
\end{aligned}
$$

$$
\begin{gathered}
\bar{S}_{11}=0.5525 \times 10^{-11}(0.500)^{4}+\left[2\left(-0.1547 \times 10^{-11}\right)\right. \\
\left.+0.1395 \times 10^{-9}\right](0.866)^{2}(0.5)^{2}+0.9709 \times 10^{-10}(0.866)^{4} \\
=0.8053 \times 10^{-10} \frac{1}{P a}
\end{gathered}
$$

Similarly, using Equation (2.106b-f), one can evaluate

$$
\begin{aligned}
& \bar{S}_{12}=-0.7878 \times 10^{-11} \frac{1}{P a}, \\
& \bar{S}_{16}=-0.3234 \times 10^{-10} \frac{1}{P a}, \\
& \bar{S}_{22}=0.3475 \times 10^{-10} \frac{1}{P a}, \\
& \bar{S}_{26}=-0.4696 \times 10^{-10} \frac{1}{P a}, \\
& \bar{S}_{66}=0.1141 \times 10^{-9} \frac{1}{P a} .
\end{aligned}
$$

2. Invert the transformed compliance matrix $[\bar{S}]$ to obtain the transformed reduced stiffness matrix [\bar{Q}]:

$$
\begin{aligned}
{[\bar{Q}] } & =\left[\begin{array}{ccc}
0.8053 \times 10^{-10} & -0.7878 \times 10^{-11} & -0.3234 \times 10^{-10} \\
-0.7878 \times 10^{-11} & 0.3475 \times 10^{-10} & -0.4696 \times 10^{-10} \\
-0.3234 \times 10^{-10} & -0.4696 \times 10^{-10} & 0.1141 \times 10^{-9}
\end{array}\right]^{-1} \\
& =\left[\begin{array}{lll}
0.2365 \times 10^{11} & 0.3246 \times 10^{11} & 0.2005 \times 10^{11} \\
0.3246 \times 10^{11} & 0.1094 \times 10^{12} & 0.5419 \times \\
0.2005 \times 10^{11} & 0.5419 \times 10^{11} & 0.3674 \times
\end{array}\right.
\end{aligned}
$$

3. The global strains in the $x-y$ plane are given by Equation (2.105) as

$$
\begin{aligned}
& {\left[\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right]=\left[\begin{array}{ccc}
0.8053 \times 10^{-10} & -0.7878 \times 10^{-11} & -0.3234 \times 10^{-10} \\
-0.7878 \times 10^{-11} & 0.3475 \times 10^{-10} & -0.4696 \times 10^{-10} \\
-0.3234 \times 10^{-10} & -0.4696 \times 10^{-10} & 0.1141 \times 10^{-9}
\end{array}\right]\left[\begin{array}{c}
2 \times 10^{6} \\
-3 \times 10^{6} \\
4 \times 10^{6}
\end{array}\right] } \\
&= {\left[\begin{array}{c}
0.5534 \times 10^{-4} \\
-0.3078 \times 10^{-3} \\
0.5328 \times 10^{-3}
\end{array}\right] . }
\end{aligned}
$$

4. Using transformation Equation (2.99), the local strains in the lamina are

$$
\begin{gathered}
{\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12} / 2
\end{array}\right]=\left[\begin{array}{ccc}
0.2500 & 0.7500 & 0.8660 \\
0.7500 & 0.2500 & -0.8660 \\
-0.4330 & 0.4330 & -0.500
\end{array}\right]\left[\begin{array}{c}
0.5534 \times 10^{-4} \\
-0.3078 \times 10^{-3} \\
0.5328 \times 10^{-3} / 2
\end{array}\right]} \\
{\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12}
\end{array}\right]=\left[\begin{array}{c}
0.1367 \times 10^{-4} \\
-0.2662 \times 10^{-3} \\
-0.5809 \times 10^{-3}
\end{array}\right]}
\end{gathered}
$$

5. Using transformation Equation (2.94), the local stresses in the lamina are

$$
\begin{gathered}
{\left[\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\tau_{12}
\end{array}\right]=\left[\begin{array}{ccc}
0.2500 & 0.7500 & 0.8660 \\
0.7500 & 0.2500 & -0.8660 \\
-0.4330 & 0.4330 & -0.500
\end{array}\right]\left[\begin{array}{c}
2 \times 10^{6} \\
-3 \times 10^{6} \\
4 \times 10^{6}
\end{array}\right]} \\
=\left[\begin{array}{c}
0.1714 \times 10^{7} \\
-0.2714 \times 10^{7} \\
-0.4165 \times 10^{7}
\end{array}\right] \text { Pa. }
\end{gathered}
$$

6. The principal normal stresses are given by ${ }^{4}$

$$
\sigma_{\max , \min }=\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x}^{2}}
$$

$$
\begin{gathered}
=\frac{2 \times 10^{6}-3 \times 10^{6}}{2} \pm \sqrt{\left(\frac{2 \times 10^{6}+3 \times 10^{6}}{2}\right)^{2}+\left(4 \times 10^{6}\right)^{2}} \\
=4.217,-5.217 \mathrm{MPa}
\end{gathered}
$$

The value of the angle at which the maximum normal stresses occur is ${ }^{4}$

$$
\begin{gather*}
\theta_{p}=\frac{1}{2} \tan ^{-1}\left(\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}}\right) \tag{2.108}\\
=\frac{1}{2} \tan ^{-1}\left(\frac{2\left(4 \times 10^{6}\right)}{2 \times 10^{6}+3 \times 10^{6}}\right) \\
=29.00^{\circ} .
\end{gather*}
$$

Note that the principal normal stresses do not occur along the material axes. This should be also evident from the nonzero shear stresses in the local axes.
7. The maximum shear stress is given by ${ }^{4}$

$$
\tau_{\max }=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}
$$

$$
\begin{gather*}
=\sqrt{\left(\frac{2 \times 10^{6}-3 \times 10^{6}}{2}\right)^{2}+\left(4 \times 10^{6}\right)^{2}} \tag{2.109}\\
=4.717 \mathrm{MPa}
\end{gather*}
$$

The angle at which the maximum shear stress occurs is ${ }^{4}$

$$
\theta_{s}=\frac{1}{2} \tan ^{-1}\left(-\frac{\sigma_{x}-\sigma_{y}}{2 \tau_{x y}}\right)
$$

$$
\begin{gathered}
=\frac{1}{2} \tan ^{-1}\left(-\frac{2 \times 10^{6}+3 \times 10^{6}}{2\left(4 \times 10^{6}\right)}\right) \\
=16.00^{\circ}
\end{gathered}
$$

8. The principal strains are given by ${ }^{4}$

$$
\begin{gather*}
\varepsilon_{\max , \min }=\frac{\varepsilon_{x}+\varepsilon_{y}}{2} \pm \sqrt{\left(\frac{\varepsilon_{x}-\varepsilon_{y}}{2}\right)^{2}+\left(\frac{\gamma_{x y}}{2}\right)^{2}} \\
=\frac{0.5534 \times 10^{-4}+0.3078 \times 10^{-3}}{2} \\
\pm \sqrt{\left(\frac{0.5534 \times 10^{-4}+0.3078 \times 10^{-3}}{2}\right)^{2}+\left(\frac{0.5328 \times 10^{-3}}{2}\right)^{2}} \tag{2.111}\\
=1.962 \times 10^{-4},-4.486 \times 10^{-4} .
\end{gather*}
$$

The value of the angle at which the maximum normal strains occur is ${ }^{4}$

$$
\begin{gather*}
\theta_{p}=\frac{1}{2} \tan ^{-1}\left(\frac{\gamma_{x y}}{\varepsilon_{x}-\varepsilon_{y}}\right) \\
=\frac{1}{2} \tan ^{-1}\left(\frac{0.5328 \times 10^{-3}}{0.5534 \times 10^{-4}+0.3078 \times 10^{-3}}\right) \tag{2.112}\\
=27.86^{0} .
\end{gather*}
$$

Note that the principal normal strains do not occur along the material axes. This should also be clear from the nonzero shear strain in the local axes. In addition, the axes of principal normal stresses and principal normal strains do not match, unlike in i
9. The maximum shearing strain is given by ${ }^{4}$

$$
\begin{gather*}
\gamma_{\max }=\sqrt{\left(\varepsilon_{x}-\varepsilon_{y}\right)^{2}+\gamma_{x y}^{2}} \\
=\sqrt{\left(0.5534 \times 10^{-4}+0.3078 \times 10^{-3}\right)^{2}+\left(0.532 \times 10^{-3}\right)^{2}} \tag{2.113}\\
=6.448 \times 10^{-4} .
\end{gather*}
$$

The value of the angle at which the maximum shearing strain occurs is ${ }^{4}$

$$
\begin{gather*}
\theta_{s}=\frac{1}{2} \tan ^{-1}\left(-\frac{\varepsilon_{x}-\varepsilon_{y}}{\gamma_{x y}}\right) \\
=\frac{1}{2} \tan ^{-1}\left(-\frac{0.5534 \times 10^{-4}+0.3078 \times 10^{-3}}{0.5328 \times 10^{-3}}\right) \tag{2.114}\\
=-17.14^{0}
\end{gather*}
$$

Example 2.8

As shown in Figure 2.22, a 60° angle graphite/epoxy lamina is subjected only to a shear stress $\tau_{x y}=2 \mathrm{MPa}$ in the global axes. What would be the value of the strains measured by the strain gage rosette - that is, what

FIGURE 2.22
Strain gage rosette on an angle lamina.
would be the normal strains measured by strain gages A, B, and C? Use the properties of unidirectional graphite/epoxy lamina from Table 2.1.

Solution

Per Example 2.7, the reduced compliance matrix [\bar{S}] is

$$
\left[\begin{array}{ccc}
0.8053 \times 10^{-10} & -0.7878 \times 10^{-11} & -0.3234 \times 10^{-10} \\
-0.7878 \times 10^{-11} & 0.3475 \times 10^{-10} & -0.4696 \times 10^{-10} \\
-0.3234 \times 10^{-10} & -0.4696 \times 10^{-10} & 0.1141 \times 10^{-9}
\end{array}\right] \frac{1}{P a}
$$

The global strains in the $x-y$ plane are given by Equation (2.105) as

$$
\begin{gathered}
{\left[\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right]=\left[\begin{array}{ccc}
0.8053 \times 10^{-10} & -0.7878 \times 10^{-11} & -0.3234 \times 10^{-10} \\
-0.7878 \times 10^{-11} & 0.3475 \times 10^{-10} & -0.4696 \times 10^{-10} \\
-0.3234 \times 10^{-10} & -0.4696 \times 10^{-10} & 0.1141 \times 10^{-9}
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
2 \times 10^{6}
\end{array}\right]} \\
=\left[\begin{array}{c}
-6.468 \times 10^{-5} \\
-9.392 \times 10^{-5} \\
2.283 \times 10^{-4}
\end{array}\right] .
\end{gathered}
$$

For a strain gage placed at an angle, ϕ, to the x-axis, the normal strain recorded by the strain gage is given by Equation (B.15) in Appendix B.

$$
\varepsilon_{\phi}=\varepsilon_{x} \operatorname{Cos}^{2} \phi+\varepsilon_{y} \operatorname{Sin}^{2} \phi+\gamma_{x y} \operatorname{Sin} \phi \operatorname{Cos} \phi
$$

For strain gage $\mathrm{A}, \phi=0^{\circ}$:

$$
\begin{gathered}
\varepsilon_{A}=-6.468 \times 10^{-5} \operatorname{Cos}^{2} 0^{\circ}+\left(-9.392 \times 10^{-5}\right) \operatorname{Sin}^{2} 0^{\circ}+2.283 \times 10^{-4} \operatorname{Sin} 0^{\circ} \operatorname{Cos} 0^{\circ} \\
=-6.468 \times 10^{-5}
\end{gathered}
$$

For strain gage B, $\phi=240^{\circ}$:

$$
\begin{aligned}
\varepsilon_{B}= & -6.468 \times 10^{-5} \operatorname{Cos}^{2} 240^{\circ}+\left(-9.392 \times 10^{-5}\right) \\
& +2.283 \times 10^{-4} \operatorname{Sin} 240^{\circ} \operatorname{Cos} 240^{\circ}
\end{aligned}
$$

$$
=1.724 \times 10^{-4}
$$

For strain gage C, $\phi=120^{\circ}$:

$$
\begin{gathered}
\varepsilon_{C}=-6.468 \times 10^{-5} \operatorname{Cos}^{2} 120^{\circ}+\left(-9.392 \times 10^{-5}\right) \operatorname{Sin}^{2} 120^{\circ} \\
+2.283 \times 10^{-4} \operatorname{Sin} 120^{\circ} \operatorname{Cos} 120^{\circ} \\
=1.083 \times 10^{-5}
\end{gathered}
$$

2.6 Engineering Constants of an Angle Lamina

The engineering constants for a unidirectional lamina were related to the compliance and stiffness matrices in Section 2.4.3. In this section, similar techniques are applied to relate the engineering constants of an angle ply to its transformed stiffness and compliance matrices.

1. For finding the engineering elastic moduli in direction x (Figure 2.23a), apply

$$
\begin{equation*}
\sigma_{x} \neq 0, \sigma_{y}=0, \tau_{x y}=0 \tag{2.115}
\end{equation*}
$$

Then, from Equation (2.105),

$$
\begin{align*}
& \varepsilon_{x}=\bar{S}_{11} \sigma_{x} \\
& \varepsilon_{y}=\bar{S}_{12} \sigma_{x} \\
& \gamma_{x y}=\bar{S}_{16} \sigma_{x} \tag{2.116a-c}
\end{align*}
$$

The elastic moduli in direction x is defined as

$$
E_{x} \equiv \frac{\sigma_{x}}{\varepsilon_{x}}=\frac{1}{\bar{S}_{11}}
$$

FIGURE 2.23
Application of stresses to find engineering constants of an angle lan

Also, the Poisson's ratio, $v_{x y}$ is defined as

$$
\begin{equation*}
v_{x y} \equiv-\frac{\varepsilon_{y}}{\varepsilon_{x}}=-\frac{\bar{S}_{12}}{\bar{S}_{11}} \tag{2.118}
\end{equation*}
$$

In an angle lamina, unlike in a unidirectional lamina, interaction also occurs between the shear strain and the normal stresses. This is called shear coupling. The shear coupling term that relates the normal stress in the x-direction to the shear strain is denoted by m_{x} and is defined as

$$
\begin{equation*}
\frac{1}{m_{x}} \equiv-\frac{\sigma_{x}}{\gamma_{x y} E_{1}}=-\frac{1}{\bar{S}_{16} E_{1}} . \tag{2.119}
\end{equation*}
$$

Note that m_{x} is a nondimensional parameter like the Poisson's ratio. Later, note that the same parameter, m_{x}, relates the shearing stress in the $x-y$ plane to the normal strain in direction- x.
The shear coupling term is particularly important in tensile testing of angle plies. For example, if an angle lamina is clamped at the two ends, it will not allow shearing strain to occur. This will result in bending moments and shear forces at the clamped ends. ${ }^{5}$
2. Similarly, by applying stresses

$$
\begin{equation*}
\sigma_{x}=0, \sigma_{y} \neq 0, \tau_{x y}=0 \tag{2.120}
\end{equation*}
$$

as shown in Figure 2.23b, it can be found

$$
\begin{gather*}
E_{y}=\frac{1}{\bar{S}_{22}}, \tag{2.121}\\
\mathrm{v}_{y x}=-\frac{\bar{S}_{12}}{\bar{S}_{22}}, \text { and } \tag{2.122}\\
\frac{1}{m_{y}}=-\frac{1}{\bar{S}_{26} E_{1}} . \tag{2.123}
\end{gather*}
$$

The shear coupling term m_{y} relates the normal stre strain $\gamma_{x y}$. In the following section (3), note that th e shear stress $\tau_{x y}$ in the $x-y$ plane to th

From Equation (2.117), Equation (2.118), Equation (2.121), and Equation
(2.122), the reciprocal relationship is given by

$$
\begin{equation*}
\frac{v_{y x}}{E_{y}}=\frac{v_{x y}}{E_{x}} \tag{2.124}
\end{equation*}
$$

3. Also, by applying the stresses

$$
\begin{equation*}
\sigma_{x}=0, \sigma_{y}=0, \tau_{x y} \neq 0 \tag{2.125}
\end{equation*}
$$

as shown in Figure 2.23c, it is found that

$$
\begin{gather*}
\frac{1}{m_{x}}=-\frac{1}{\bar{S}_{16} E_{1}}, \tag{2.126}\\
\frac{1}{m_{y}}=-\frac{1}{\bar{S}_{26} E_{1}}, \text { and } \tag{2.127}\\
G_{x y}=\frac{1}{\bar{S}_{66}} . \tag{2.128}
\end{gather*}
$$

Thus, the strain-stress Equation (2.105) of an angle lamina can also be written in terms of the engineering constants of an angle lamina in matrix form as

$$
\left[\begin{array}{c}
\varepsilon_{x} \tag{2.129}\\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{E_{x}} & -\frac{v_{x y}}{E_{x}} & -\frac{m_{x}}{E_{1}} \\
-\frac{v_{x y}}{E_{x}} & \frac{1}{E_{y}} & -\frac{m_{y}}{E_{1}} \\
-\frac{m_{x}}{E_{1}} & -\frac{m_{y}}{E_{1}} & \frac{1}{G_{x y}}
\end{array}\right]\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right] .
$$

The preceding six engineering constants of an angle ply can also be written in terms of the engineering constants of a unidirectional ply using Equation (2.92) and Equation (2.106) in Equation (2.117) through Equation (2.119), Equation (2.121), Equation (2.123), and Equation (2.128):

$$
\begin{aligned}
& =S_{11} c^{4}+\left(2 S_{12}+S_{66}\right) s^{2} c^{2}+S_{22} s^{4} . \\
& =\frac{1}{E_{1}} c^{4}+\left(\frac{1}{G_{12}}-\frac{2 v_{12}}{E_{1}}\right) s^{2} c^{2}+\frac{1}{E_{2}} s^{4}, \\
& v_{x y}=-E_{x} \bar{S}_{12} \\
& =-E_{x}\left[S_{12}\left(s^{4}+c^{4}\right)+\left(S_{11}+S_{22}-S_{66}\right) s^{2} c^{2}\right] \\
& =E_{x}\left[\frac{v_{12}}{E_{1}}\left(s^{4}+c^{4}\right)-\left(\frac{1}{E_{1}}+\frac{1}{E_{2}}-\frac{1}{G_{12}}\right) s^{2} c^{2}\right], \\
& \frac{1}{E_{y}}=\bar{S}_{22} \\
& =S_{11} s^{4}+\left(2 S_{12}+S_{66}\right) c^{2} s^{2}+S_{22} c^{4} \\
& =\frac{1}{E_{1}} s^{4}+\left(-\frac{2 v_{12}}{E_{1}}+\frac{1}{G_{12}}\right) c^{2} s^{2}+\frac{1}{E_{2}} c^{4}, \\
& \frac{1}{G_{x y}}=\bar{S}_{66} \\
& =2\left(2 S_{11}+2 S_{22}-4 S_{12}-S_{66}\right) s^{2} c^{2}+S_{66}\left(s^{4}+c^{4}\right) \\
& =2\left(\frac{2}{E_{1}}+\frac{2}{E_{2}}+\frac{4 v_{12}}{E_{1}}-\frac{1}{G_{12}}\right) s^{2} c^{2}+\frac{1}{G_{12}}\left(s^{4}+c^{4}\right), \\
& m_{x}=-\bar{S}_{16} E_{1} \\
& =-E_{1}\left[\left(S_{11}-2 S_{12}-S_{66}\right) s c^{3}-\left(2 S_{22}-2 S_{12}-S_{66}\right) s^{3} c\right]
\end{aligned}
$$

$$
\begin{gather*}
m_{y}=-\bar{S}_{26} E_{1} \\
=-E_{1}\left[\left(2 S_{11}-2 S_{12}-S_{66}\right) s^{3} c-\left(2 S_{22}-2 S_{12}-S_{66}\right) s c^{3}\right] \\
=E_{1}\left[\left(-\frac{2}{E_{1}}-\frac{2 v_{12}}{E_{1}}+\frac{1}{G_{12}}\right) s^{3} c+\left(\frac{2}{E_{2}}+\frac{2 v_{12}}{E_{1}}-\frac{1}{G_{12}}\right) s c^{3}\right] . \tag{2.135}
\end{gather*}
$$

Example 2.9

Find the engineering constants of a 60° graphite/epoxy lamina. Use the properties of a unidirectional graphite/epoxy lamina from Table 2.1.

Solution

From Example 2.7, we have

$$
\begin{gathered}
\bar{S}_{11}=0.8053 \times 10^{-10} \frac{1}{P a}, \\
\bar{S}_{12}=-0.7878 \times 10^{-11} \frac{1}{P a}, \\
\bar{S}_{16}=-0.3234 \times 10^{-10} \frac{1}{P a}, \\
\bar{S}_{22}=0.3475 \times 10^{-10} \frac{1}{P a}, \\
\bar{S}_{26}=-0.4696 \times 10^{-10} \frac{1}{P a}, \text { and } \\
\bar{S}_{66}=0.1141 \times 10^{-9} \frac{1}{P a} .
\end{gathered}
$$

From Equation (2.117),

$$
\begin{aligned}
E_{x} & =\frac{1}{0.8053 \times 10^{-10}} \\
& =12.42 \mathrm{GPa} .
\end{aligned}
$$

From Equation (2.118),

$$
\begin{aligned}
v_{x y} & =-\frac{-0.7878 \times 10^{-11}}{0.8053 \times 10^{-10}} \\
& =0.09783
\end{aligned}
$$

From Equation (2.119),

$$
\frac{1}{m_{x}}=-\frac{1}{\left(-0.3234 \times 10^{-10}\right)\left(181 \times 10^{9}\right)}
$$

$$
m_{x}=5.854
$$

From Equation (2.121),

$$
\begin{aligned}
E_{y} & =\frac{1}{0.3475 \times 10^{-10}} \\
& =28.78 \mathrm{GPa} .
\end{aligned}
$$

From Equation (2.123),

$$
\begin{gathered}
\frac{1}{m_{y}}=-\frac{1}{\left(-0.4696 \times 10^{-10}\right)\left(181 \times 10^{9}\right)} \\
m_{y}=8.499
\end{gathered}
$$

From Equation (2.128),

$$
\begin{aligned}
G_{x y} & =\frac{1}{0.1141 \times 10^{-9}} \\
& =8.761 \mathrm{GPa} .
\end{aligned}
$$

The variations of the six engineering elastic constants are shown as a function of the angle for the preceding graphite/epoxy through Figure 2.29.

If the Young's modulus, E_{x} and E_{y} are i tation (angle of ply) varies from $0^{\circ} t_{1}$

FIGURE 2.24
Elastic modulus in direction- x as a function of angle of lamina for a graphite/epoxy lamina.

FIGURE 2.25
Elastic modulus in direction-y as a function of angle of lamina for a

FIGURE 2.26
Poisson's ratio $v_{x y}$ as a function of angle of lamina for a graphite/epoxy lamina.

FIGURE 2.27
In-plane shear modulus in $x y$-plane as a function of angle of lamina for

FIGURE 2.28
Shear coupling coefficient m_{x} as a function of angle of lamina for a graphite/epoxy lamina.

FIGURE 2.29
Shear coupling coefficient m_{y} as a function of angle of lamina for a

FIGURE 2.30
Variation of elastic modulus in direction- x as a function of angle of lamina for a typical SCS 6/Ti6 - Al-4V lamina.
varies from the value of the longitudinal $\left(E_{1}\right)$ to the transverse Young's modulus E_{2}. However, the maximum and minimum values of E_{x} do not necessarily exist for $\theta=0^{\circ}$ and $\theta=90^{\circ}$, respectively, for every lamina.

Consider the case of a metal matrix composite such as a typical SCS - 6/ Ti6-Al-4V composite. The elastic moduli of such a lamina with a 55% fiber volume fraction is

$$
\begin{gathered}
E_{1}=272 \mathrm{GPa} \\
E_{2}=200 \mathrm{GPa} \\
v_{12}=0.2770 \\
G_{12}=77.33 \mathrm{GPa}
\end{gathered}
$$

In Figure 2.30, the lowest modulus value of E_{x} is found for $\theta=63^{\circ}$. In fact, the angle of 63° at which E_{x} is minimum is independent of the fiber volume fraction, if one uses the "mechanics of materials approach" (Section 3.3.1) to evaluate the preceding four elastic moduli of a unidirectional lamina. See Exercise 3.13 .

In Figure 2.27, the shear modulus $G_{x y}$ is maximum for $\theta=45^{\circ}$ and is minimum for 0 and 90° plies. The shear modulus $G_{x y}$ becomes maximum for 45° because the principal stresses for pure shear 1 along the material axis.
(2.133), the expression for $G_{x y}$ for a 4

$$
\begin{equation*}
G_{x y / 45^{\circ}}=\frac{E_{1}}{\left(1+2 v_{12}+\frac{E_{1}}{E_{2}}\right)} \tag{2.136}
\end{equation*}
$$

In Figure 2.28 and Figure 2.29, the shear coupling coefficients m_{x} and m_{y} are maximum at $\theta=36.2^{\circ}$ and $\theta=53.78^{\circ}$, respectively. The values of these coefficients are quite extreme, showing that the normal-shear coupling terms have a stronger effect than the Poisson's effect. This phenomenon of shear coupling terms is missing in isotropic materials and unidirectional plies, but cannot be ignored in angle plies.

2.7 Invariant Form of Stiffness and Compliance Matrices for an Angle Lamina

Equation (2.104) and Equation (2.106) for the [\bar{Q}] and [\bar{S}] matrices are not analytically convenient because they do not allow a direct study of the effect of the angle of the lamina on the $[\bar{Q}]$ and $[\bar{S}]$ matrices. The stiffness elements can be written in invariant form as ${ }^{6}$

$$
\begin{gather*}
\bar{Q}_{11}=U_{1}+U_{2} \cos 2 \theta+U_{3} \cos 4 \theta, \\
\bar{Q}_{12}=U_{4}-U_{3} \operatorname{Cos} 4 \theta, \\
\bar{Q}_{22}=U_{1}-U_{2} \operatorname{Cos} 2 \theta+U_{3} \cos 4 \theta, \\
\bar{Q}_{16}=\frac{U_{2}}{2} \operatorname{Sin} 2 \theta+U_{3} \operatorname{Sin} 4 \theta, \\
\bar{Q}_{26}=\frac{U_{2}}{2} \operatorname{Sin} 2 \theta-U_{3} \operatorname{Sin} 4 \theta, \\
\bar{Q}_{66}=\frac{1}{2}\left(U_{1}-U_{4}\right)-U_{3} \operatorname{Cos} 4 \theta, \tag{2.137a-f}
\end{gather*}
$$

where

$$
\begin{gather*}
U_{1}=\frac{1}{8}\left(3 Q_{11}+3 Q_{22}+2 Q_{12}+4 Q_{66}\right) \\
U_{2}=\frac{1}{2}\left(Q_{11}-Q_{22}\right), \\
U_{3}=\frac{1}{8}\left(Q_{11}+Q_{22}-2 Q_{12}-4 Q_{66}\right), \\
U_{4}=\frac{1}{8}\left(Q_{11}+Q_{22}+6 Q_{12}-4 Q_{66}\right) . \tag{2.138a-d}
\end{gather*}
$$

The terms U_{1}, U_{2}, U_{3}, and U_{4} are the four invariants and are combinations of the $Q_{i j}$, which are invariants as well.

The transformed reduced compliance [\bar{S}] matrix can similarly be written as

$$
\begin{gather*}
\bar{S}_{11}=V_{1}+V_{2} \cos 2 \theta+V_{3} \cos 4 \theta, \\
\bar{S}_{12}=V_{4}-V_{3} \operatorname{Cos} 4 \theta, \\
\bar{S}_{22}=V_{1}-V_{2} \operatorname{Cos} 2 \theta+V_{3} \operatorname{Cos} 4 \theta, \\
\bar{S}_{16}=V_{2} \operatorname{Sin} 2 \theta+2 V_{3} \operatorname{Sin} 4 \theta, \\
\bar{S}_{26}=V_{2} \operatorname{Sin} 2 \theta-2 V_{3} \operatorname{Sin} 4 \theta, \text { and } \\
\bar{S}_{66}=2\left(V_{1}-V_{4}\right)-4 V_{3} \operatorname{Cos} 4 \theta, \tag{2.139a-f}
\end{gather*}
$$

where

$$
\begin{gathered}
V_{1}=\frac{1}{8}\left(3 S_{11}+3 S_{22}+2 S_{12}+S_{66}\right), \\
V_{2}=\frac{1}{2}\left(S_{11}-S_{22}\right),
\end{gathered}
$$

$$
\begin{align*}
& V_{3}=\frac{1}{8}\left(S_{11}+S_{22}-2 S_{12}-S_{66}\right) \\
& V_{4}=\frac{1}{8}\left(S_{11}+S_{22}+6 S_{12}-S_{66}\right) \tag{2.140a-d}
\end{align*}
$$

The terms V_{1}, V_{2}, V_{3}, and V_{4} are invariants and are combinations of $S_{i j}$, which are also invariants.

The main advantage of writing the equations in this form is that one can easily examine the effect of the lamina angle on the reduced stiffness matrix elements. Also, formulas given by Equation (2.137) and Equation (2.139) are easier to manipulate for integration, differentiation, etc. The concept is mainly important in deriving the laminate stiffness properties in Chapter 4.

The elastic moduli of quasi-isotropic laminates that behave like isotropic material are directly given in terms of these invariants. Because quasi-isotropic laminates have the minimum stiffness of any laminate, these can be used as a comparative measure of the stiffness of other types of laminates. ${ }^{7}$

Example 2.10

Starting with the expression for \bar{Q}_{11} from Equation (2.104a), $\bar{Q}_{11}=Q_{11} \operatorname{Cos}^{4} \theta$, $+Q_{22} \operatorname{Sin}^{4} \theta+2\left(Q_{12}+2 Q_{66}\right) \operatorname{Sin}^{2} \theta \operatorname{Cos}^{2} \theta$, reduce it to the expression for \bar{Q}_{11} of Equation (2.137a) - that is,

$$
\bar{Q}_{11}=U_{1}+U_{2} \operatorname{Cos} 2 \theta+U_{3} \operatorname{Cos} 4 \theta
$$

Solution

Given

$$
\bar{Q}_{11}=Q_{11} \operatorname{Cos}^{4} \theta+Q_{22} \operatorname{Sin}^{4} \theta+2\left(Q_{12}+2 Q_{66}\right) \operatorname{Sin}^{2} \theta \operatorname{Cos}^{2} \theta,
$$

and substituting

$$
\begin{aligned}
& \operatorname{Cos}^{2} \theta=\frac{1+\operatorname{Cos} 2 \theta}{2} \\
& \operatorname{Sin}^{2} \theta=\frac{1-\operatorname{Cos} 2 \theta}{2}
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{Cos}^{2} 2 \theta=\frac{1+\operatorname{Cos} 4 \theta}{2}, \text { and } \\
2 \operatorname{Sin} \theta \operatorname{Cos} \theta=\operatorname{Sin} 2 \theta \\
\operatorname{Sin}^{2} 2 \theta=\frac{1-\operatorname{Cos} 4 \theta}{2},
\end{gathered}
$$

we get

$$
\bar{Q}_{11}=U_{1}+U_{2} \operatorname{Cos} 2 \theta+U_{3} \operatorname{Cos} 4 \theta
$$

where

$$
\begin{gathered}
U_{1}=\frac{1}{8}\left(3 Q_{11}+3 Q_{22}+2 Q_{12}+4 Q_{66}\right) \\
U_{2}=\frac{1}{2}\left(Q_{11}-Q_{22}\right) \\
U_{3}=\frac{1}{8}\left(Q_{11}+Q_{22}-2 Q_{12}-4 Q_{66}\right) .
\end{gathered}
$$

Example 2.11

Evaluate the four compliance and four stiffness invariants for a graphite/ epoxy angle lamina. Use the properties for a unidirectional graphite/epoxy lamina from Table 2.1.

Solution

From Example 2.6, the compliance matrix [S] elements are

$$
\begin{aligned}
& S_{11}=0.5525 \times 10^{-11} \frac{1}{P a} \\
& S_{12}=-0.1547 \times 10^{-11} \frac{1}{P a}
\end{aligned}
$$

Dr. T. JAYACHANDRA PRASAD ME.Ph.D. FIE.FETE,MNAFEN, MSTEMIEEE

PRINCIPAL

$$
\begin{aligned}
& S_{22}=0.9709 \times 10^{-10} \frac{1}{P a} \\
& S_{66}=0.1395 \times 10^{-9} \frac{1}{P a}
\end{aligned}
$$

The stiffness matrix [Q] elements are

$$
\begin{gathered}
{[Q]=[S]^{-1},} \\
Q_{11}=0.1818 \times 10^{12} \mathrm{~Pa}, \\
Q_{12}=0.2897 \times 10^{10} \mathrm{~Pa}, \\
Q_{22}=0.1035 \times 10^{11} \mathrm{~Pa}, \\
Q_{66}=0.7170 \times 10^{10} \mathrm{~Pa} .
\end{gathered}
$$

Using Equation (2.138),

$$
\begin{gathered}
\begin{aligned}
U_{1}=\frac{1}{8}\left[3\left(0.1818 \times 10^{12}\right)+3(\right. & \left.\left.0.1035 \times 10^{11}\right)+2\left(0.2897 \times 10^{10}\right)+4\left(0.7171 \times 10^{10}\right)\right] \\
= & 0.7637 \times 10^{11} \mathrm{~Pa}
\end{aligned} \\
U_{2}=\frac{1}{2}\left(0.1818 \times 10^{12}-0.1035 \times 10^{11}\right) \\
= \\
\begin{aligned}
U_{3}=\frac{1}{8}\left[0.8573 \times 10^{11} \mathrm{~Pa}\right.
\end{aligned} \\
= \\
=
\end{gathered}
$$

$$
U_{4}=\frac{1}{8}\left[0.1818 \times 10^{12}+0.1035 \times 10^{11}+6\left(0.2897 \times 10^{10}\right)\right.
$$

$$
=0.2261 \times 10^{11} \mathrm{~Pa} .
$$

Using Equation (2.140),

$$
\begin{gathered}
V_{1}=\frac{1}{8}\left[3\left(0.5525 \times 10^{-11}\right)+3\left(-0.1547 \times 10^{-11}\right)+2\left(0.9709 \times 10^{-10}\right)+0.1395 \times 10^{-9}\right] \\
=0.5553 \times 10^{-10} \frac{1}{P a}
\end{gathered}
$$

$$
V_{2}=\frac{1}{2}\left[\left(0.5525 \times 10^{-11}-\left(-0.1547 \times 10^{-11}\right)\right]\right.
$$

$$
=-0.4578 \times 10^{-10} \frac{1}{P a}
$$

$$
\begin{aligned}
& \begin{aligned}
& V_{3}=\frac{1}{8}\left[0.5525 \times 10^{-11}+0.9709 \times 10^{-10}-2\left(0.1547 \times 10^{-11}\right)-0.1395 \times 10^{-9}\right] \\
&=-0.4220 \times 10^{-11} \frac{1}{P a}, \\
& V_{4}=\frac{1}{8}\left[0.5525 \times 10^{-11}+0.9709 \times 10^{-10}+6\left(0.1547 \times 10^{-11}\right)-0.1395 \times 10^{-9}\right] \\
&=-0.5767 \times 10^{-11} \frac{1}{P a}
\end{aligned}
\end{aligned}
$$

2.8 Strength Failure Theories of an Angle Lamina

A successful design of a structure requires efficient and safe use of materials. Theories need to be developed to compare the state of stress in a material to failure criteria. It should be noted that failure theories are only stated and their application is validated by experiments.

For a laminate, the strength is related to the strength of each individual lamina. This allows for a simple and economical method for finding the strength of a laminate. Various theories have been developed for studying the failure of an angle lamina. The theories are generally based on the normal and shear strengths of a unidirectional lamina.

An isotropic material, such as steel, generally has two normal strength and shear strength. In some cases, suc cast iron. the normal strengths are different in the tensi
stresses, if greater than any of the corresponding ultimate strengths, indicate failure in the material.

Example 2.12

A cylindrical rod made of gray cast iron is subjected to a uniaxial tensile load, P. Given:

Cross-sectional area of rod $=2 \mathrm{in} .^{2}$
Ultimate tensile strength $=25 \mathrm{ksi}$
Ultimate compressive strength $=95 \mathrm{ksi}$
Ultimate shear strength $=35 \mathrm{ksi}$
Modulus of elasticity $=10 \mathrm{Msi}$
Find the maximum load, P, that can be applied using maximum stress failure theory.

Solution

At any location, the stress state in the rod is $\sigma=P / 2$. From a typical Mohr's circle analysis, the maximum principal normal stress is $P / 2$. The maximum shear stress is $P / 4$ and acts at a cross-section 45° to the plane of maximum normal stress. Comparing these maximum stresses to the corresponding ultimate strengths, we have

$$
\frac{P}{2}<25 \times 10^{3} \text { or } P<50,000 \mathrm{lb}
$$

and

$$
\frac{P}{4}<35 \times 10^{3} \text { or } P<140,000 \mathrm{lb}
$$

Thus, the maximum load is $50,000 \mathrm{lb}$.
However, in a lamina, the failure theories are not based on principal normal stresses and maximum shear stresses. Rather, they are based on the stresses in the material or local axes because a lamina is orthotropic and its properties are different at different angles, unlike an isotropic material.

In the case of a unidirectional lamina, there are two material axes: one parallel to the fibers and one perpendicular to the fibers. Thus, there are four normal strength parameters for a unidirectional lamina one for compression, in each of the two material axes
shear strengths of a unidirectional lamina. However, we will find later that the sign of the shear stress does affect the strength of an angle lamina. The five strength parameters of a unidirectional lamina are therefore

$$
\begin{aligned}
& \left(\sigma_{1}^{T}\right)_{u l t}=\text { Ultimate longitudinal tensile strength (in direction 1), } \\
& \left(\sigma_{1}^{C}\right)_{u l t}=\text { Ultimate longitudinal compressive strength (in direction 1), } \\
& \left(\sigma_{2}^{T}\right)_{u l t}=\text { Ultimate transverse tensile strength (in direction 2), } \\
& \left(\sigma_{2}^{C}\right)_{u l t}=\text { Ultimate transverse compressive strength (in direction 2), and } \\
& \left(\tau_{12}\right)_{u l t}=\text { Ultimate in-plane shear strength (in plane 12). }
\end{aligned}
$$

Unlike the stiffness parameters, these strength parameters cannot be transformed directly for an angle lamina. Thus, the failure theories are based on first finding the stresses in the local axes and then using these five strength parameters of a unidirectional lamina to find whether a lamina has failed. Four common failure theories are discussed here. Related concepts of strength ratio and the development of failure envelopes are also discussed.

2.8.1 Maximum Stress Failure Theory

Related to the maximum normal stress theory by Rankine and the maximum shearing stress theory by Tresca, this theory is similar to those applied to isotropic materials. The stresses acting on a lamina are resolved into the normal and shear stresses in the local axes. Failure is predicted in a lamina, if any of the normal or shear stresses in the local axes of a lamina is equal to or exceeds the corresponding ultimate strengths of the unidirectional lamina.

Given the stresses or strains in the global axes of a lamina, one can find the stresses in the material axes by using Equation (2.94). The lamina is considered to be failed if

$$
\begin{align*}
& -\left(\sigma_{1}^{C}\right)_{u l t}<\sigma_{1}<\left(\sigma_{1}^{T}\right)_{u l t}, \text { or } \\
& -\left(\sigma_{2}^{C}\right)_{u l t}<\sigma_{2}<\left(\sigma_{2}^{T}\right)_{u l t}, \text { or } \\
& -\left(\tau_{12}\right)_{u l t}<\tau_{12}<\left(\tau_{12}\right)_{u l t} \tag{2.141a-c}
\end{align*}
$$

is violated. Note that all five strength parameters ar numbers, and the normal stresses are positive if ter comnrescive

Dr. T. JAYACHANDRA PRASAD WE.Ph.D. FIEFFETEMNAFEN, WSTEMIEEE PRINCIPAL

Example 2.13

Find the maximum value of $S>0$ if a stress of $\sigma_{x}=2 S, \sigma_{y}=-3 S$, and $\tau_{x y}=$ $4 S$ is applied to the 60° lamina of graphite/epoxy. Use maximum stress failure theory and the properties of a unidirectional graphite/epoxy lamina given in Table 2.1.

Solution

Using Equation (2.94), the stresses in the local axes are

$$
\begin{gathered}
{\left[\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\tau_{12}
\end{array}\right]=\left[\begin{array}{rrr}
0.2500 & 0.7500 & 0.8660 \\
0.7500 & 0.2500 & -0.8660 \\
-0.4330 & 0.4330 & -0.5000
\end{array}\right]\left[\begin{array}{r}
2 S \\
-3 S \\
4 S
\end{array}\right]} \\
=\left[\begin{array}{c}
0.1714 \times 10^{1} \\
-0.2714 \times 10^{1} \\
-0.4165 \times 10^{1}
\end{array}\right] S .
\end{gathered}
$$

From Table 2.1, the ultimate strengths of a unidirectional graphite/epoxy lamina are

$$
\begin{aligned}
& \left(\sigma_{1}^{T}\right)_{u l t}=1500 \mathrm{MPa} \\
& \left(\sigma_{1}^{C}\right)_{u l t}=1500 \mathrm{MPa} \\
& \left(\sigma_{2}^{T}\right)_{u l t}=40 \mathrm{MPa} \\
& \left(\sigma_{2}^{C}\right)_{u l t}=246 \mathrm{MPa} \\
& \left(\tau_{12}\right)_{u l t}=68 \mathrm{MPa}
\end{aligned}
$$

Then, using the inequalities (2.141) of the maximum stress failure theory,

$$
\begin{gathered}
-1500 \times 10^{6}<0.1714 \times 10^{1} S<1500 \times 10^{6} \\
-246 \times 10^{6}<-0.2714 \times 10^{1} S<40 \times 10^{6} \\
-68 \times 10^{6}<-0.4165 \times 10^{1} S<68 \times 1(
\end{gathered}
$$

$$
\begin{aligned}
& -875.1 \times 10^{6}<S<875.1 \times 10^{6} \\
& -14.73 \times 10^{6}<S<90.64 \times 10^{6} \\
& -16.33 \times 10^{6}<S<16.33 \times 10^{6}
\end{aligned}
$$

All the inequality conditions (and $S>0$) are satisfied if $0<S<16.33 \mathrm{MPa}$. The preceding inequalities also show that the angle lamina will fail in shear. The maximum stress that can be applied before failure is

$$
\sigma_{x}=32.66 \mathrm{MPa}, \sigma_{y}=-48.99 \mathrm{MPa}, \tau_{x y}=65.32 \mathrm{MPa}
$$

Example 2.14

Find the off-axis shear strength of a 60° graphite/epoxy lamina. Use the properties of unidirectional graphite/epoxy from Table 2.1 and apply the maximum stress failure theory.

Solution

The off-axis shear strength of a lamina is defined as the minimum of the magnitude of positive and negative shear stress (Figure 2.31) that can be applied to an angle lamina before failure.

Assume the following stress state

$$
\sigma_{x}=0, \sigma_{y}=0, \tau_{x y}=\tau
$$

Then, using the transformation Equation (2.94),

$$
\begin{gathered}
{\left[\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\tau_{12}
\end{array}\right]=\left[\begin{array}{rrr}
0.2500 & 0.7500 & 0.8660 \\
0.7500 & 0.2500 & -0.8660 \\
-0.4330 & 0.4330 & -0.5000
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
\tau
\end{array}\right]} \\
\sigma_{1}=0.866 \tau \\
\sigma_{2}-0.866 \tau
\end{gathered}
$$

$$
\tau_{12}=-0.500 \tau
$$

(a) Positive shear stress

(b) Negative shear stress

FIGURE 2.31
Positive and negative shear stresses applied to an angle lamina.

$$
\begin{aligned}
& -1500<0.866 \tau<1500 \text { or }-1732<\tau<1732 \\
& -246<-0.866 \tau<40 \text { or }-46.19<\tau<284.1 \\
& -68<-0.500 \tau<68 \text { or }-136.0<\tau<136.0
\end{aligned}
$$

which shows that $\tau_{x y}=46.19 \mathrm{MPa}$ is the largest magnitude of shear stress that can be applied to the 60° graphite/epoxy lamina. However, the largest positive shear stress that could be applied is $\tau_{x y}=136.0 \mathrm{MPa}$, and the largest negative shear stress is $\tau_{x y}=-46.19 \mathrm{MPa}$.
This shows that the maximum magnitude of allowable shear stress in other than the material axes' direction depends on the sign of the shear stress. This is mainly because the local axes' stresses in the direction perpendicular to the fibers are opposite in sign to each other for opposite signs of shear stress ($\sigma_{2}=-0.866 \tau$ for positive $\tau_{x y}$ and $\sigma_{2}=0.866 \tau$ for negative $\tau \ldots$). Because the tensile strength perpendicular to the fiber direction is compressive strength perpendicular to the fiber direct lifferent.

TABLE 2.3
Effect of Sign of Shear Stress as a Function of Angle of Lamina

Angle, Degrees	Positive $\boldsymbol{\tau}_{x y}$ MPa	Negative $\boldsymbol{\tau}_{x y}$ MPa	Shear strength MPa
0	$68.00(\mathrm{~S})$	$68.00(\mathrm{~S})$	68.00
15	$78.52(\mathrm{~S})$	$78.52(\mathrm{~S})$	78.52
30	$136.0(\mathrm{~S})$	$46.19(2 \mathrm{~T})$	46.19
45	$246.0(2 \mathrm{C})$	$40.00(2 \mathrm{~T})$	40.00
60	$136.0(\mathrm{~S})$	$46.19(2 \mathrm{~T})$	46.19
75	$78.52(\mathrm{~S})$	$78.52(\mathrm{~S})$	78.52
90	$68.00(\mathrm{~S})$	$68.00(\mathrm{~S})$	68.00

Note: The notation in the parentheses denotes the mode of failure of the angle lamina as follows:
(1T) - longitudinal tensile failure;
(1C) - longitudinal compressive failure;
(2T) - transverse tensile failure;
(2C) - transverse compressive failure;
(S) - shear failure.

Table 2.3 shows the maximum negative and positive values of shear stress that can be applied to different angle plies of graphite/epoxy of Table 2.1. The minimum magnitude of the two stresses is the shear strength of the angle lamina.

2.8.2 Strength Ratio

In a failure theory such as the maximum stress failure theory of Section 2.8.1, it can be determined whether a lamina has failed if any of the inequalities of Equation (2.141) are violated. However, this does not give the information about how much the load can be increased if the lamina is safe or how much the load should be decreased if the lamina has failed. The definition of strength ratio (SR) is helpful here. The strength ratio is defined as

$$
\begin{equation*}
S R=\frac{\text { Maximum Load Which Can Be Applied }}{\text { Load Applied }} . \tag{2.142}
\end{equation*}
$$

The concept of strength ratio is applicable to any failure theory. If $\mathrm{SR}>1$, then the lamina is safe and the applied stress can be increased by a factor of SR . If $\mathrm{SR}<1$, the lamina is unsafe and the applied stress needs to be reduced by a factor of $S R$. A value of $S R=1$ implies the failure load.

$$
\sigma_{x}=2 M P a, \sigma_{y}=-3 M P a, \tau_{x y}=4 M P a
$$

to a 60° angle lamina of graphite/epoxy. Find the strength ratio using the maximum stress failure theory.

Solution

If the strength ratio is R, then the maximum stress that can be applied is

$$
\sigma_{x}=2 R, \sigma_{y}=-3 R, \tau_{x y}=4 R
$$

Following Example 2.13 for finding the local stresses gives

$$
\begin{gathered}
\sigma_{1} 0.1714 \times 10^{1} R \\
\sigma_{2}=-0.2714 \times 10^{1} R \\
\tau_{12}=-0.4165 \times 10^{1} R .
\end{gathered}
$$

Using the maximum stress failure theory as given by Equation (2.141) yields

$$
R=16.33
$$

Thus, the load that can be applied just before failure is

$$
\begin{gathered}
\sigma_{x}=16.33 \times 2 \mathrm{MPa}, \sigma_{y}=16.33 \times(-3) \mathrm{MPa}, \tau_{x y}=16.33 \times 4 \mathrm{Mpa}, \\
\sigma_{x}=32.66 \mathrm{MPa}, \sigma_{y}=-48.99 \mathrm{MPa}, \tau_{x y}=65.32 \mathrm{MPa} .
\end{gathered}
$$

Note that all the components of the stress vector must be multiplied by the strength ratio.

2.8.3 Failure Envelopes

A failure envelope is a three-dimensional plot of the combinations of the normal and shear stresses that can be applied to an an ${ }^{1}$ failure. Because drawing three dimensional graphs car nne may develon failure envelopes for constant shear s

Example 2.16

Develop a failure envelope for the 60° lamina of graphite/epoxy for a constant shear stress of $\tau_{x y}=24 \mathrm{MPa}$. Use the properties for the unidirectional graphite/epoxy lamina from Table 2.1.

Solution

From Equation (2.94), the stresses in the local axes for a 60° lamina are given by

$$
\begin{gathered}
\sigma_{1}=0.2500 \sigma_{x}+0.7500 \sigma_{y}+20.78 \mathrm{MPa} \\
\sigma_{2}=0.7500 \sigma_{x}+0.2500 \sigma_{y}-20.78 \mathrm{MPa} \\
\tau_{12}=-0.4330 \sigma_{x}+0.4330 \sigma_{y}-12.00 \mathrm{MPa}
\end{gathered}
$$

where σ_{x} and σ_{y} are also in units of MPa.
Using the preceding inequalities,

$$
\begin{aligned}
&-1500<0.2500 \sigma_{x}+0.7500 \sigma_{y}+20.78<1500 \\
&-246<0.7500 \sigma_{x}+0.2500 \sigma_{y}-20.78<40 \\
&-68<-0.4330 \sigma_{x}+0.4330 \sigma_{y}-12.00<68
\end{aligned}
$$

Various combinations of $\left(\sigma_{x}, \sigma_{y}\right)$ can be found to satisfy the preceding inequalities. However, the objective is to find the points on the failure envelope. These are combinations of σ_{x} and σ_{y}, where one of the three inequalities is just violated and the other two are satisfied. Some of the values of $\left(\sigma_{x}, \sigma_{y}\right)$ obtained on the failure envelope are given in Table 2.4.

Several methods can be used to obtain the points on the failure envelope for a constant shear stress. One way is to fix the value of σ_{x} and find the maximum value of σ_{y} that can be applied without violating any of the conditions. For example, for $\sigma_{x}=100 \mathrm{MPa}$, from the inequalities we have

$$
\begin{aligned}
& -2061<\sigma_{y}<1939 \\
& -1201<\sigma_{y}<-56.88 \\
& -29.33<\sigma_{y}<284.80
\end{aligned}
$$

TABLE 2.4
Typical Values of $\left(\sigma_{x^{\prime}} \sigma_{y}\right)$ on the Failure Envelope for Example 2.16

$\sigma_{x}(\mathbf{M P a})$	$\sigma_{y}(\mathbf{M P a})$
50.0	93.1
50.0	-79.3
-50.0	179
-50.0	-135
25.0	168
25.0	-104
-25.0	160
-25.0	-154

The preceding three inequalities show no allowable value of σ_{y} for this value of $\sigma_{x}=100 \mathrm{MPa}$.

As another example, for $\sigma_{x}=50 \mathrm{MPa}$, we have from inequalities,

$$
\begin{aligned}
& -2044<\sigma_{y}<1956 \\
& -1051<\sigma_{y}<93.12 \\
& -79.33<\sigma_{y}<234.80
\end{aligned}
$$

The preceding three inequalities show two maximum allowable values of the normal stress, σ_{y} These are $\sigma_{y}=93.12 \mathrm{MPa}$ and $\sigma_{y}=-79.33 \mathrm{MPa}$. The failure envelope for $\tau_{x y}=24 \mathrm{MPa}$ is shown in Figure 2.32.

2.8.4 Maximum Strain Failure Theory

This theory is based on the maximum normal strain theory by St. Venant and the maximum shear stress theory by Tresca as applied to isotropic materials. The strains applied to a lamina are resolved to strains in the local axes. Failure is predicted in a lamina, if any of the normal or shearing strains in the local axes of a lamina equal or exceed the corresponding ultimate strains of the unidirectional lamina. Given the strains/stresses in an angle lamina, one can find the strains in the local axes. A lamina is considered to be failed if

$$
-\left(\varepsilon_{1}^{C}\right)_{u l t}<\varepsilon_{1}<\left(\varepsilon_{1}^{T}\right)_{u l t}, \text { or }
$$

$$
-\left(\varepsilon_{2}^{C}\right)_{u l t}<\varepsilon_{2}<\left(\varepsilon_{2}^{T}\right)_{u l t}, \text { or }
$$

FIGURE 2.32
Failure envelopes for constant shear stress using maximum stress failure theory.

$$
\begin{equation*}
-\left(\gamma_{12}\right)_{u l t}<\gamma_{12}<\left(\gamma_{12}\right)_{u l t} \tag{2.143a-c}
\end{equation*}
$$

is violated, where

$$
\begin{aligned}
& \left(\varepsilon_{1}^{T}\right)_{\text {ult }}=\text { ultimate longitudinal tensile strain (in direction 1) } \\
& \left(\varepsilon_{1}^{C}\right)_{\text {ult }}=\text { ultimate longitudinal compressive strain (in direction 1) } \\
& \left(\varepsilon_{2}^{T}\right)_{\text {ult }}=\text { ultimate transverse tensile strain (in direction 2) } \\
& \left(\varepsilon_{2}^{C}\right)_{\text {ult }}=\text { ultimate transverse compressive strain (in direction 2) } \\
& \left(\gamma_{12}\right)_{u l t}=\text { ultimate in-plane shear strain (in plane 1-2) }
\end{aligned}
$$

The ultimate strains can be found directly from the ultimate strength parameters and the elastic moduli, assuming the stress-strain response is linear until failure. The maximum strain failure theory is similar to the maximum stress failure theory in that no interaction occurs between various components of strain. However, the two failure theories give different results because the local strains in a lamina include the Poisson's ratio effect. In fact, if the Poisson's ratio is zero in the unidirectional lamina, the two failure theories will give identical results.

Example 2.17

Find the maximum value of $S>0$ if a stress, $\sigma_{x}=2 S, \sigma$
0° graphite/epoxy lamina. Use ma>
theory. Use the properties of the graphite/epoxy unidirectional lamina given in Table 2.1.

Solution

In Example 2.6, the compliance matrix [S] was obtained and, in Example 2.13, the local stresses for this problem were obtained. Then, from Equation (2.77),

$$
\begin{gathered}
{\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12}
\end{array}\right]=[S]\left[\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\tau_{12}
\end{array}\right]} \\
=\left[\begin{array}{ccc}
0.5525 \times 10^{-11} & -0.1547 \times 10^{-11} & 0 \\
-0.1547 \times 10^{-11} & 0.9709 \times 10^{-10} & 0 \\
0 & 0 & 0.1395 \times 10^{-9}
\end{array}\right]\left[\begin{array}{c}
0.1714 \times 10^{1} \\
-0.2714 \times 10^{1} \\
-0.4165 \times 10^{1}
\end{array}\right] S \\
=\left[\begin{array}{c}
0.1367 \times 10^{-10} \\
-0.2662 \times 10^{-9} \\
-0.5809 \times 10^{-9}
\end{array}\right] S .
\end{gathered}
$$

Assume a linear relationship between all the stresses and strains until failure; then the ultimate failure strains are

$$
\begin{aligned}
& \left(\varepsilon_{1}^{T}\right)_{u l t}=\frac{\left(\sigma_{1}^{T}\right)_{u l t}}{E_{1}}=\frac{1500 \times 10^{6}}{181 \times 10^{9}}=8.287 \times 10^{-3}, \\
& \left(\varepsilon_{1}^{C}\right)_{u l t}=\frac{\left(\sigma_{1}^{C}\right)_{u l t}}{E_{1}}=\frac{1500 \times 10^{6}}{181 \times 10^{9}}=8.287 \times 10^{-3}, \\
& \left(\varepsilon_{2}^{T}\right)_{u l t}=\frac{\left(\sigma_{2}^{T}\right)_{u l t}}{E_{2}}=\frac{40 \times 10^{6}}{10.3 \times 10^{9}}=3.883 \times 10^{-3}, \\
& \left(\varepsilon_{2}^{C}\right)_{u l t}=\frac{\left(\sigma_{2}^{C}\right)_{u l t}}{E_{2}}=\frac{246 \times 10^{6}}{10.3 \times 10^{9}}=2.388 \times 1(
\end{aligned}
$$

$$
\left(\gamma_{12}\right)_{u l t}=\frac{\left(\tau_{12}\right)_{u l t}}{G_{12}}=\frac{68 \times 10^{6}}{7.17 \times 10^{6}}=9.483 \times 10^{-3} .
$$

The preceding values for the ultimate strains also assume that the compressive and tensile stiffnesses are identical. Using the inequalities (2.143) and recognizing that $S>0$,

$$
\begin{aligned}
& -8.287 \times 10^{-3}<0.1367 \times 10^{-10} S<8.287 \times 10^{-3}, \\
& -2.388 \times 10^{-2}<-0.2662 \times 10^{-9} S<3.883 \times 10^{-3}, \\
& -9.483 \times 10^{-3}<-0.5809 \times 10^{-9} S<9.483 \times 10^{-3},
\end{aligned}
$$

or

$$
\begin{aligned}
& -606.2 \times 10^{6}<S<606.2 \times 10^{6}, \\
& -14.58 \times 10^{6}<S<89.71 \times 10^{6} \\
& -16.33 \times 10^{6}<S<16.33 \times 10^{6},
\end{aligned}
$$

which give

$$
0<S<16.33 \mathrm{MPa} .
$$

The maximum value of S before failure is 16.33 MPa . The same maximum value of $S=16.33 \mathrm{MPa}$ is also found using maximum stress failure theory. There is no difference between the two values because the mode of failure is shear. However, if the mode of failure were other than shear, a difference in the prediction of failure loads would have been present due to the Poisson's ratio effect, which couples the normal strains and stresses in the local axes.

Neither the maximum stress failure theory nor the maximum strain failure theory has any coupling among the five possible modes of failure. The following theories are based on the interaction failure theory.

2.8.5 Tsai-Hill Failure Theory

sed on the distortion energy failure
tropic materials. Distortion energy is actually a part of the total strain energy in a body. The strain energy in a body consists of two parts; one due to a change in volume and is called the dilation energy and the second is due to a change in shape and is called the distortion energy. It is assumed that failure in the material takes place only when the distortion energy is greater than the failure distortion energy of the material. Hill ${ }^{8}$ adopted the VonMises' distortional energy yield criterion to anisotropic materials. Then, Tsai ${ }^{7}$ adapted it to a unidirectional lamina. Based on the distortion energy theory, he proposed that a lamina has failed if

$$
\begin{gather*}
\left(G_{2}+G_{3}\right) \sigma_{1}^{2}+\left(G_{1}+G_{3}\right) \sigma_{2}^{2}+\left(G_{1}+G_{2}\right) \sigma_{3}^{2}-2 G_{3} \sigma_{1} \sigma_{2}-2 G_{2} \sigma_{1} \sigma_{3} \tag{2.144}\\
-2 G_{1} \sigma_{2} \sigma_{3}+2 G_{4} \tau_{23}^{2}+2 G_{5} \tau_{13}^{2}+2 G_{6} \tau_{12}^{2}<1
\end{gather*}
$$

is violated. The components $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}$, and G_{6} of the strength criterion depend on the failure strengths and are found as follows.

1. Apply $\sigma_{1}=\left(\sigma_{1}^{T}\right)_{\text {ult }}$ to a unidirectional lamina; then, the lamina will fail. Thus, Equation (2.144) reduces to

$$
\begin{equation*}
\left(G_{2}+G_{3}\right)\left(\sigma_{1}^{T}\right)_{u l t}^{2}=1 \tag{2.145}
\end{equation*}
$$

2. Apply $\sigma_{2}=\left(\sigma_{2}^{T}\right)_{\text {ult }}$ to a unidirectional lamina; then, the lamina will fail. Thus, Equation (2.144) reduces to

$$
\begin{equation*}
\left(G_{1}+G_{3}\right)\left(\sigma_{2}^{T}\right)_{u l t}^{2}=1 \tag{2.146}
\end{equation*}
$$

3. Apply $\sigma_{3}=\left(\sigma_{2}^{T}\right)_{\text {ult }}$ to a unidirectional lamina and, assuming that the normal tensile failure strength is same in directions (2) and (3), the lamina will fail. Thus, Equation (2.144) reduces to

$$
\begin{equation*}
\left(G_{1}+G_{2}\right)\left(\sigma_{2}^{T}\right)_{u l t}^{2}=1 \tag{2.147}
\end{equation*}
$$

4. Apply $\tau_{12}=\left(\tau_{12}\right)_{\text {ult }}$ to a unidirectional lamina; then, the lamina will fail. Thus, Equation (2.144) reduces to

$$
2 G_{6}\left(\tau_{12}\right)_{u l t}^{2}=1
$$

$$
\begin{gather*}
G_{1}=\frac{1}{2}\left(\frac{2}{\left[\left(\sigma_{2}^{T}\right)_{u l t}\right]^{2}}-\frac{1}{\left[\left(\sigma_{1}^{T}\right)_{u l t}\right]^{2}}\right), \\
G_{2}=\frac{1}{2}\left(\frac{1}{\left[\left(\sigma_{1}^{T}\right)_{u l t}\right]^{2}}\right) \\
G_{3}=\frac{1}{2}\left(\frac{1}{\left[\left(\sigma_{1}^{T}\right)_{u l t}\right]^{2}}\right) \\
G_{6}=\frac{1}{2}\left(\frac{1}{\left[\left(\tau_{12}\right)_{u l t}\right]^{2}}\right) \tag{2.149a-d}
\end{gather*}
$$

Because the unidirectional lamina is assumed to be under plane stress that is, $\sigma_{3}=\tau_{31}=\tau_{23}=0$, then Equation (2.144) reduces through Equation (2.149) to

$$
\begin{equation*}
\left[\frac{\sigma_{1}}{\left(\sigma_{1}^{T}\right)_{u l t}}\right]^{2}-\left[\frac{\sigma_{1} \sigma_{2}}{\left(\sigma_{1}^{T}\right)_{u l t}^{2}}\right]+\left[\frac{\sigma_{2}}{\left(\sigma_{2}^{T}\right)_{u l t}}\right]^{2}+\left[\frac{\tau_{12}}{\left(\tau_{12}\right)_{u l t}}\right]^{2}<1 \tag{2.150}
\end{equation*}
$$

Given the global stresses in a lamina, one can find the local stresses in a lamina and apply the preceding failure theory to determine whether the lamina has failed.

Example 2.18

Find the maximum value of $S>0$ if a stress of $\sigma_{x}=2 S, \sigma_{y}=-3 S$, and $\tau_{x y}=$ $4 S$ is applied to a 60° graphite/epoxy lamina. Use Tsai-Hill failure theory. Use the unidirectional graphite/epoxy lamina properties given in Table 2.1.

Solution

From Example 2.13,

$$
\sigma_{1}=1.714 S
$$

$$
\sigma_{2}=-2.714 S
$$

$$
\tau_{12}=-4.165 S
$$

Using the Tsai-Hill failure theory from Equation (2.150),

$$
\left(\frac{1.714 S}{1500 \times 10^{6}}\right)^{2}-\left(\frac{1.714 S}{1500 \times 10^{6}}\right)\left(\frac{-2.714 S}{1500 \times 10^{6}}\right)+\left(\frac{-2.714 S}{40 \times 10^{6}}\right)^{2}+\left(\frac{-4.165 S}{68 \times 10^{6}}\right)^{2}<1
$$

$S<10.94 \mathrm{MPa}$

1. Unlike the maximum strain and maximum stress failure theories, the Tsai-Hill failure theory considers the interaction among the three unidirectional lamina strength parameters.
2. The Tsai-Hill failure theory does not distinguish between the compressive and tensile strengths in its equations. This can result in underestimation of the maximum loads that can be applied when compared to other failure theories. For the load of $\sigma_{x}=2 \mathrm{MPa}, \sigma_{y}=$ -3 MPa , and $\tau_{x y}=4 \mathrm{MPa}$, as found in Example 2.15, Example 2.17, and Example 2.18, the strength ratios are given by

$$
\begin{aligned}
& S R=10.94 \text { (Tsai-Hill failure theory) } \\
& S R=16.33 \text { (maximum stress failure theory) } \\
& S R=16.33 \text { (maximum strain failure theory) }
\end{aligned}
$$

Tsai-Hill failure theory underestimates the failure stress because the transverse tensile strength of a unidirectional lamina is generally much less than its transverse compressive strength. The compressive strengths are not used in the Tsai-Hill failure theory, but it can be modified to use corresponding tensile or compressive strengths in the failure theory as follows

$$
\begin{equation*}
\left[\frac{\sigma_{1}}{X_{1}}\right]^{2}-\left[\left(\frac{\sigma_{1}}{X_{2}}\right)\left(\frac{\sigma_{2}}{X_{2}}\right)\right]+\left[\frac{\sigma_{2}}{Y}\right]^{2}+\left[\frac{\tau_{12}}{S}\right]^{2}<1 \tag{2.151}
\end{equation*}
$$

where

$$
\begin{aligned}
& X_{1}=\left(\sigma_{1}^{T}\right)_{u l t} \text { if } \sigma_{1}>0 \\
& =\left(\sigma_{1}^{C}\right)_{u l t} \text { if } \sigma_{1}<0 \\
& X_{2}=\left(\sigma_{1}^{T}\right)_{u l t} \text { if } \sigma_{2}>0
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\sigma_{1}^{C}\right)_{u l t} \text { if } \sigma_{2}<0 ; \\
& Y=\left(\sigma_{2}^{T}\right)_{u l t} \text { if } \sigma_{2}>0 \\
& =\left(\sigma_{2}^{C}\right)_{u l t} \text { if } \sigma_{2}<0 \\
& S=\left(\tau_{12}\right)_{u l t}
\end{aligned}
$$

For Example 2.18, the modified Tsai-Hill failure theory given by Equation (2.151) now gives

$$
\begin{gathered}
\left(\frac{1.714 \sigma}{1500 \times 10^{6}}\right)^{2}-\left(\frac{1.714 \sigma}{1500 \times 10^{6}}\right)\left(\frac{-2.714 \sigma}{1500 \times 10^{6}}\right)+\left(\frac{-2.714 \sigma}{246 \times 10^{6}}\right)^{2}+\left(\frac{-4.165 \sigma}{68 \times 10^{6}}\right)^{2}<1 \\
\sigma<16.06 \mathrm{MPa}
\end{gathered}
$$

which implies that the strength ratio is $S R=16.06$ (modified Tsai-Hill failure theory). This value is closer to the values obtained using maximum stress and maximum strain failure theories.
3. The Tsai-Hill failure theory is a unified theory and thus does not give the mode of failure like the maximum stress and maximum strain failure theories do. However, one can make a reasonable guess of the failure mode by calculating $\left|\sigma_{1} /\left(\sigma_{1}^{T}\right)_{u l t}\right|,\left|\sigma_{2} /\left(\sigma_{2}^{T}\right)_{u t t}\right|$ and $\left|\tau_{12} /\left(\tau_{12}\right)_{u t \mid}\right|$. The maximum of these three values gives the associated mode of failure. In the modified Tsai-Hill failure theory, calculate the maximum of $\left|\sigma_{1} / X_{1}\right|,\left|\sigma_{2} / Y\right|$, and $\left|\tau_{12} / S\right|$ for the associated mode of failure.

2.8.6 Tsai-Wu Failure Theory

This failure theory is based on the total strain energy failure theory of Beltrami. Tsai- Wu^{9} applied the failure theory to a lamina in plane stress. A lamina is considered to be failed if

$$
\begin{equation*}
H_{1} \sigma_{1}+H_{2} \sigma_{2}+H_{6} \tau_{12}+H_{11} \sigma_{1}^{2}+H_{22} \sigma_{2}^{2}+H_{66} \tau_{12}^{2}+2 H_{12} \sigma_{1} \sigma_{2}<1 \tag{2.152}
\end{equation*}
$$

is violated. This failure theory is more general than theorv because it distinguishes between the comf ina.

Dr. T. JAYACHANDRA PRASAD

The components $H_{1}, H_{2}, H_{6}, H_{11}, H_{22}$, and H_{66} of the failure theory are found using the five strength parameters of a unidirectional lamina as follows:

1. Apply $\sigma_{1}=\left(\sigma_{1}^{T}\right)_{u l t}, \sigma_{2}=0, \tau_{12}=0$ to a unidirectional lamina; the lamina will fail. Equation (2.152) reduces to

$$
\begin{equation*}
H_{1}\left(\sigma_{1}^{T}\right)_{u l t}+H_{11}\left(\sigma_{1}^{T}\right)_{u l t}^{2}=1 . \tag{2.153}
\end{equation*}
$$

2. Apply $\sigma_{1}=-\left(\sigma_{1}^{C}\right)_{u l t}, \sigma_{2}=0, \tau_{12}=0$ to a unidirectional lamina; the lamina will fail. Equation (2.152) reduces to

$$
\begin{equation*}
-H_{1}\left(\sigma_{1}^{C}\right)_{u l t}+H_{11}\left(\sigma_{1}^{C}\right)_{u l t}^{2}=1 \tag{2.154}
\end{equation*}
$$

From Equation (2.153) and Equation (2.154),

$$
\begin{align*}
& H_{1}=\frac{1}{\left(\sigma_{1}^{T}\right)_{u l t}}-\frac{1}{\left(\sigma_{1}^{C}\right)_{u l t}}, \tag{2.155}\\
& H_{11}=\frac{1}{\left(\sigma_{1}^{T}\right)_{u l t}\left(\sigma_{1}^{C}\right)_{u l t}} \tag{2.156}
\end{align*}
$$

3. Apply $\sigma_{1}=0, \sigma_{2}=\left(\sigma_{2}^{T}\right)_{u l t}, \tau_{12}=0$ to a unidirectional lamina; the lamina will fail. Equation (2.152) reduces to

$$
\begin{equation*}
H_{2}\left(\sigma_{2}^{T}\right)_{u l t}+H_{22}\left(\sigma_{2}^{T}\right)_{u l t}^{2}=1 \tag{2.157}
\end{equation*}
$$

4. Apply $\sigma_{1}=0, \sigma_{2}=-\left(\sigma_{2}^{C}\right)_{u l t}, \tau_{12}=0$ to a unidirectional lamina; the lamina will fail. Equation (2.152) reduces to

$$
\begin{equation*}
-H_{2}\left(\sigma_{2}^{C}\right)_{u l t}+H_{22}\left(\sigma_{2}^{C}\right)_{u l t}^{2}=1 \tag{2.158}
\end{equation*}
$$

From Equation (2.157) and Equation (2.158),

$$
\begin{align*}
& H_{2}=\frac{1}{\left(\sigma_{2}^{T}\right)_{u l t}}-\frac{1}{\left(\sigma_{2}^{C}\right)_{u l t}}, \tag{2.159}\\
& H_{22}=\frac{1}{\left(\sigma_{2}^{T}\right)_{u l t}\left(\sigma_{2}^{C}\right)_{u l t}}
\end{align*}
$$

5. Apply $\sigma_{1}=0, \sigma_{2}=0$, and $\tau_{12}=\left(\tau_{12}\right)_{u l t}$ to a unidirectional lamina; it will fail. Equation (2.152) reduces to

$$
\begin{equation*}
H_{6}\left(\tau_{12}\right)_{u l t}+H_{66}\left(\tau_{12}\right)_{u l t}^{2}=1 \tag{2.161}
\end{equation*}
$$

6. Apply $\sigma_{1}=0, \sigma_{2}=0$, and $\tau_{12}=-\left(\tau_{12}\right)_{\text {ult }}$ to a unidirectional lamina; the lamina will fail. Equation (2.152) reduces to

$$
\begin{equation*}
-H_{6}\left(\tau_{12}\right)_{u l t}+H_{66}\left(\tau_{12}\right)_{u l t}^{2}=1 \tag{2.162}
\end{equation*}
$$

From Equation (2.161) and Equation (2.162),

$$
\begin{gather*}
H_{6}=0 \tag{2.163}\\
H_{66}=\frac{1}{\left(\tau_{12}\right)_{u l t}^{2}} . \tag{2.164}
\end{gather*}
$$

The only component of the failure theory that cannot be found directly from the five strength parameters of the unidirectional lamina is H_{12}. This can be found experimentally by knowing a biaxial stress at which the lamina fails and then substituting the values of σ_{1}, σ_{2}, and τ_{12} in the Equation (2.152). Note that σ_{1} and σ_{2} need to be nonzero to find H_{12}. Experimental methods to find H_{12} include the following.

1. Apply equal tensile loads along the two material axes in a unidirectional composite. If $\sigma_{x}=\sigma_{y}=\sigma, \tau_{x y}=0$ is the load at which the lamina fails, then

$$
\begin{equation*}
\left(H_{1}+H_{2}\right) \sigma+\left(H_{11}+H_{22}+2 H_{12}\right) \sigma^{2}=1 \tag{2.165}
\end{equation*}
$$

The solution of Equation (2.165) gives

$$
\begin{equation*}
H_{12}=\frac{1}{2 \sigma^{2}}\left[1-\left(H_{1}+H_{2}\right) \sigma-\left(H_{11}+H_{22}\right) \sigma^{2}\right] \tag{2.166}
\end{equation*}
$$

It is not necessary to pick tensile loads in the preceding biaxial test, but one may apply any combination of

$$
\sigma_{1}=\sigma, \sigma_{2}=\sigma
$$

$$
\begin{align*}
& \sigma_{1}=-\sigma, \sigma_{2}=-\sigma, \\
& \sigma_{1}=\sigma, \sigma_{2}=-\sigma \\
& \sigma_{1}=-\sigma, \sigma_{2}=\sigma . \tag{2.167}
\end{align*}
$$

This will give four different values of H_{12}, each corresponding to the four tests.
2. Take a 45° lamina under uniaxial tension σ_{x}. The stress σ_{x} at failure is noted. If this stress is $\sigma_{x}=\sigma$, then, using Equation (2.94), the local stresses at failure are

$$
\begin{align*}
\sigma_{1} & =\frac{\sigma}{2} \\
\sigma_{2} & =\frac{\sigma}{2} \tag{2.168a-c}\\
\tau_{12} & =-\frac{\sigma}{2}
\end{align*}
$$

Substituting the preceding local stresses in Equation (2.152),

$$
\begin{align*}
& \left(H_{1}+H_{2}\right) \frac{\sigma}{2}+\frac{\sigma^{2}}{4}\left(H_{11}+H_{22}+H_{66}+2 H_{12}\right)=1 \tag{2.169}\\
& H_{12}=\frac{2}{\sigma^{2}}-\frac{\left(H_{1}+H_{2}\right)}{\sigma}-\frac{1}{2}\left(H_{11}+H_{22}+H_{66}\right) \tag{2.170}
\end{align*}
$$

Some empirical suggestions for finding the value of H_{12} include

$$
\begin{equation*}
H_{12}=-\frac{1}{2\left(\sigma_{1}^{T}\right)_{u l t}^{2}}, \text { per Tsai-Hill failure theory }{ }^{8} \tag{2.171a-c}
\end{equation*}
$$

$$
H_{12}=-\frac{1}{2\left(\sigma_{1}^{T}\right)_{u l t}\left(\sigma_{1}^{C}\right)_{u l t}}, \text { per Hoffman criterion }{ }^{10}
$$

Example 2.19

Find the maximum value of $S>0$ if a stress $\sigma_{x}=2 S, \sigma_{y}=-3 S$, and $\tau_{x y}=4 S$ are applied to a 60° lamina of graphite/epoxy. Use Tsai-Wu failure theory. Use the properties of a unidirectional graphite/epoxy lamina from Table 2.1.

Solution

From Example 2.13,

$$
\begin{gathered}
\sigma_{1}=1.714 S \\
\sigma_{2}=-2.714 S \\
\tau_{12}=-4.165 S
\end{gathered}
$$

From Equations (2.155), (2.156), (2.159), (2.160), (2.163), and (2.164),

$$
\begin{gathered}
H_{1}=\frac{1}{1500 \times 10^{6}}-\frac{1}{1500 \times 10^{6}}=0 \mathrm{~Pa}^{-1}, \\
H_{2}=\frac{1}{40 \times 10^{6}}-\frac{1}{246 \times 10^{6}}=2.093 \times 10^{-8} \mathrm{~Pa}^{-1}, \\
H_{6}=0 \mathrm{~Pa}^{-1}, \\
H_{11}=\frac{1}{\left(1500 \times 10^{6}\right)\left(1500 \times 10^{6}\right)}=4.4444 \times 10^{-19} \mathrm{~Pa}^{-2}, \\
H_{22}=\frac{1}{\left(40 \times 10^{6}\right)\left(246 \times 10^{6}\right)}=1.0162 \times 10^{-16} \mathrm{~Pa}^{-2}, \\
H_{66}=\frac{1}{\left(68 \times 10^{6}\right)^{2}}=2.1626 \times 10^{-16} \mathrm{~Pa}^{-2} .
\end{gathered}
$$

Using the Mises-Hencky criterion for evaluation of H_{12}, (Equation 2.165c),

Substituting these values in Equation (2.152), we obtain

$$
\begin{gathered}
(0)(1.714 S)+\left(2.093 \times 10^{-8}\right)(-2.714 S) \\
+(0)(-4.165 S)+\left(4.444 \times 10^{-19}\right)(1.714 S)^{2} \\
+\left(1.0162 \times 10^{-16}\right)(-2.714 S)^{2}+\left(2.1626 \times 10^{-16}\right)(-4.165 S)^{2} \\
+2\left(-3.360 \times 10^{-18}\right)(1.714 S)(-2.714 S)<1,
\end{gathered}
$$

or

$$
S<22.39 \mathrm{MPa}
$$

If one uses the other two empirical criteria for H_{12}, per Equation (2.171), this yields

$$
\begin{gathered}
S<22.49 \mathrm{MPa} \text { for } H_{12}=-\frac{1}{2\left(\sigma_{1}^{T}\right)_{u l t}^{2}}, \\
S<22.49 \mathrm{MPa} \text { for } H_{12}=-\frac{1}{2} \frac{1}{\left(\sigma_{1}^{T}\right)_{u l t}\left(\sigma_{1}^{C}\right)_{u l t}} .
\end{gathered}
$$

Summarizing the four failure theories for the same stress state, the value of S obtained is
$S=16.33$ (maximum stress failure theory)
$S=16.33$ (maximum strain failure theory)
$S=10.94$ (Tsai-Hill failure theory)
$S=16.06$ (modified Tsai-Hill failure theory)
$S=22.39$ (Tsai-Wu failure theory)

2.8.7 Comparison of Experimental Results with Failure Theories

Tai ${ }^{7}$ compared the results from various failure theories to some experimental results. He considered an angle lamina subjected the x-direction, σ_{x}, as shown in Figure 2.33. The f

UNIT-VI

Micromechanical Analysis of a Lamina

Chapter Objectives

- Develop concepts of volume and weight fraction (mass fraction) of fiber and matrix, density, and void fraction in composites.
- Find the nine mechanical and four hygrothermal constants: four elastic moduli, five strength parameters, two coefficients of thermal expansion, and two coefficients of moisture expansion of a unidirectional lamina from the individual properties of the fiber and the matrix, fiber volume fraction, and fiber packing.
- Discuss the experimental characterization of the nine mechanical and four hygrothermal constants.

3.1 Introduction

In Chapter 2, the stress-strain relationships, engineering constants, and failure theories for an angle lamina were developed using four elastic moduli, five strength parameters, two coefficients of thermal expansion (CTE), and two coefficients of moisture expansion (CME) for a unidirectional lamina. These 13 parameters can be found experimentally by conducting several tension, compression, shear, and hygrothermal tests on unidirectional lamina (laminates). However, unlike in isotropic materials, experimental evaluation of these parameters is quite costly and time consuming because they are functions of several variables: the individual constituents of the composite material, fiber volume fraction, packing geometry, processing, etc. Thus, the need and motivation for developing analytical models to find these parameters are very important. In this chapter, we will develop simple relationships for the these parameters in terms of the stiffnesses, strengths, coefficients of thermal and moisture expansion of the individual cons ite, fiber volume fraction, packing geometry, etc. An u

FIGURE 3.1
A nonhomogeneous lamina with fibers and matrix approximated as a homogeneous lamina.
relationship, called micromechanics of lamina, helps the designer to select the constituents of a composite material for use in a laminated structure.

Because this text is for a first course in composite materials, details will be explained only for the simple models based on the mechanics of materials approach and the semi-empirical approach. Results from other methods based on advanced topics such as elasticity are also explained for completeness.

As mentioned in Chapter 2, a unidirectional lamina is not homogeneous. However, one can assume the lamina to be homogeneous by focusing on the average response of the lamina to mechanical and hygrothermal loads (Figure 3.1). The lamina is simply looked at as a material whose properties are different in various directions, but not different from one location to another.

Also, the chapter focuses on a unidirectional continuous fiber-reinforced lamina. This is because it forms the basic building block of a composite structure, which is generally made of several unidirectional laminae placed at various angles. The modeling in the evaluation of the parameters is discussed first. This is followed by examples and experimental methods for finding these parameters.

3.2 Volume and Mass Fractions, Density, and Void Content

Before modeling the 13 parameters of a unidirectional composite, we introduce the concept of relative fraction of fibers by volume. This concept is critical because theoretical formulas for finding the stiffness, strength, and hygrothermal properties of a unidirectional lamina are a function of fiber volume fraction. Measurements of the constituents are generally based on their mass, so fiber mass fractions must also be defined. Moreover, defining the density of a composite also becomes necessary because its value is used in the experimental determination of fiber volume and void fractions of a composite. Also, the value of density is used in the definition of specific modulus and specific strength in Chapter 1.

3.2.1 Volume Fractions

$v_{c, f, m}=$ volume of composite, fiber, and matrix, respectively
$\rho_{\mathrm{c}, f, m}=$ density of composite, fiber, and matrix, respectively.
Now define the fiber volume fraction V_{f} and the matrix volume fraction V_{m} as

$$
V_{f}=\frac{v_{f}}{v_{c}}
$$

and

$$
\begin{equation*}
V_{m}=\frac{v_{m}}{v_{c}} \tag{3.1a,b}
\end{equation*}
$$

Note that the sum of volume fractions is

$$
V_{f}+V_{m}=1
$$

from Equation (3.1) as

$$
v_{f}+v_{m}=v_{c} .
$$

3.2.2 Mass Fractions

Consider a composite consisting of fiber and matrix and take the following symbol notation: $w_{c, f, m}=$ mass of composite, fiber, and matrix, respectively. The mass fraction (weight fraction) of the fibers $\left(W_{f}\right)$ and the matrix $\left(W_{m}\right)$ are defined as

$$
\begin{gather*}
W_{f}=\frac{w_{f}}{w_{c}}, \text { and } \\
W_{m}=\frac{w_{m}}{w_{c}} . \tag{3.2a,b}
\end{gather*}
$$

Note that the sum of mass fractions is

$$
W_{f}+W_{m}=1
$$

from Equation (3.2) as

$$
w_{f}+w_{m}=w_{c}
$$

From the definition of the density of a single material,

$$
\begin{align*}
& w_{c}=r_{c} v_{c}, \\
& w_{f}=r_{f} v_{f}, \text { and } \tag{3.3a-c}\\
& w_{m}=r_{m} v_{m} .
\end{align*}
$$

Substituting Equation (3.3) in Equation (3.2), the mass fractions and volume fractions are related as

$$
\begin{gather*}
W_{f}=\frac{\rho_{f}}{\rho_{c}} V_{f}, \text { and } \\
W_{m}=\frac{\rho_{m}}{\rho_{c}} V_{m} \tag{3.4a,b}
\end{gather*}
$$

in terms of the fiber and matrix volume fractions. In terms of individual constituent properties, the mass fractions and volume fractions are related by

$$
\begin{gather*}
W_{f}=\frac{\frac{\rho_{f}}{\rho_{m}}}{\frac{\rho_{f}}{\rho_{m}} V_{f}+V_{m}} V_{f}, \\
W_{m}=\frac{1}{\frac{\rho_{f}}{\rho_{m}}\left(1-V_{m}\right)+V_{m}} V_{m} . \tag{3.5a,b}
\end{gather*}
$$

One should always state the basis of calculating the fiber content of a composite. It is given in terms of mass or volume. Bas it is evident that volume and mass fractions are no

3.2.3 Density

The derivation of the density of the composite in terms of volume fractions is found as follows. The mass of composite w_{c} is the sum of the mass of the fibers w_{f} and the mass of the matrix w_{m} as

$$
\begin{equation*}
w_{c}=w_{f}+w_{m} \tag{3.6}
\end{equation*}
$$

Substituting Equation (3.3) in Equation (3.6) yields

$$
\rho_{c} v_{c}=\rho_{f} v_{f}+\rho_{m} v_{m},
$$

and

$$
\begin{equation*}
\rho_{c}=\rho_{f} \frac{v_{f}}{v_{c}}+\rho_{m} \frac{v_{m}}{v_{c}} . \tag{3.7}
\end{equation*}
$$

Using the definitions of fiber and matrix volume fractions from Equation (3.1),

$$
\begin{equation*}
\rho_{c}=\rho_{f} V_{f}+\rho_{m} V_{m} . \tag{3.8}
\end{equation*}
$$

Now, consider that the volume of a composite v_{c} is the sum of the volumes of the fiber v_{f} and matrix $\left(v_{m}\right)$:

$$
\begin{equation*}
v_{c}=v_{f}+v_{m} . \tag{3.9}
\end{equation*}
$$

The density of the composite in terms of mass fractions can be found as

$$
\begin{equation*}
\frac{1}{\rho_{c}}=\frac{W_{f}}{\rho_{f}}+\frac{W_{m}}{\rho_{m}} . \tag{3.10}
\end{equation*}
$$

Example 3.1

A glass/epoxy lamina consists of a 70% fiber volume fraction. Use properties of glass and epoxy from Table 3.1* and Table 3.2, respectively, to determine the

[^0]TABLE 3.1
Typical Properties of Fibers (SI System of Units)

Property	Units	Graphite	Glass	Aramid
Axial modulus	GPa	230	85	124
Transverse modulus	GPa	22	85	8
Axial Poisson's ratio	-	0.30	0.20	0.36
Transverse Poisson's ratio	-	0.35	0.20	0.37
Axial shear modulus	GPa	22	35.42	3
Axial coefficient of thermal expansion	$\mu \mathrm{m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$	-1.3	5	-5.0
Transverse coefficient of thermal expansion	$\mu \mathrm{m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$	7.0	5	4.1
Axial tensile strength	MPa	2067	1550	1379
Axial compressive strength	MPa	1999	1550	276
Transverse tensile strength	MPa	77	1550	7
Transverse compressive strength	MPa	42	1550	7
Shear strength	MPa	36	35	21
Specific gravity	-	1.8	2.5	1.4

TABLE 3.2
Typical Properties of Matrices (SI System of Units)

Property	Units	Epoxy	Aluminum	Polyamide
Axial modulus	GPa	3.4	71	3.5
Transverse modulus	GPa	3.4	71	3.5
Axial Poisson's ratio	-	0.30	0.30	0.35
Transverse Poisson's ratio	-	0.30	0.30	0.35
Axial shear modulus	GPa	1.308	27	1.3
Coefficient of thermal expansion	$\mu \mathrm{m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$	63	23	90
Coefficient of moisture expansion	$\mathrm{m} / \mathrm{m} / \mathrm{kg} / \mathrm{kg}$	0.33	0.00	0.33
Axial tensile strength	MPa	72	276	54
Axial compressive strength	MPa	102	276	108
Transverse tensile strength	MPa	72	276	54
Transverse compressive strength	MPa	102	276	108
Shear strength	MPa	34	138	54
Specific gravity	-	1.2	2.7	1.2

1. Density of lamina
2. Mass fractions of the glass and epoxy
3. Volume of composite lamina if the mass of the lamina is 4 kg
4. Volume and mass of glass and epoxy in part (3)

Solution

1. From Table 3.1, the density of the fiber is

$$
\rho_{f}=2500 \mathrm{~kg} / \mathrm{m}^{3} .
$$

TABLE 3.3
Typical Properties of Fibers (USCS System of Units)

Property	Units	Graphite	Glass	Aramid
Axial modulus	Msi	33.35	12.33	17.98
Transverse modulus	Msi	3.19	12.33	1.16
Axial Poisson's ratio	-	0.30	0.20	0.36
Transverse Poisson's ratio	-	0.35	0.20	0.37
Axial shear modulus	Msi	3.19	5.136	0.435
Axial coefficient of thermal expansion	$\mu \mathrm{in} . / \mathrm{in} . /{ }^{\circ} \mathrm{F}$	-0.7222	2.778	-2.778
Transverse coefficient of thermal expansion	$\mu \mathrm{in} . / \mathrm{in} . /{ }^{\circ} \mathrm{F}$	3.889	2.778	2.278
Axial tensile strength	ksi	299.7	224.8	200.0
Axial compressive strength	ksi	289.8	224.8	40.02
Transverse tensile strength	ksi	11.16	224.8	1.015
Transverse compressive strength	ksi	6.09	224.8	1.015
Shear strength	ksi	5.22	5.08	3.045
Specific gravity	-	1.8	2.5	1.4

TABLE 3.4
Typical Properties of Matrices (USCS System of Units)

Property	Units	Epoxy	Aluminum	Polyamide
Axial modulus	Msi	0.493	10.30	0.5075
Transverse modulus	Msi	0.493	10.30	0.5075
Axial Poisson's ratio	-	0.30	0.30	0.35
Transverse Poisson's ratio	-	0.30	0.30	0.35
Axial shear modulus	Msi	0.1897	3.915	0.1885
Coefficient of thermal expansion	$\mu \mathrm{in} . / \mathrm{in} . /{ }^{\circ} \mathrm{F}$	35	12.78	50
Coefficient of moisture expansion	$\mathrm{in} . / \mathrm{in} . / \mathrm{lb} / \mathrm{lb}$	0.33	0.00	0.33
Axial tensile strength	ksi	10.44	40.02	7.83
Axial compressive strength	ksi	14.79	40.02	15.66
Transverse tensile strength	ksi	10.44	40.02	7.83
Transverse compressive strength	ksi	14.79	40.02	15.66
Shear strength	ksi	4.93	20.01	7.83
Specific gravity	-	1.2	2.7	1.2

From Table 3.2, the density of the matrix is

$$
\rho_{m}=1200 \mathrm{~kg} / \mathrm{m}^{3} .
$$

Using Equation (3.8), the density of the composite is

$$
\begin{gathered}
\rho_{c}=(2500)(0.7)+(1200)(0.3) \\
=2110 \mathrm{~kg} / \mathrm{m}^{3} .
\end{gathered}
$$

ion (3.4), the fiber and matrix mass f

$$
\begin{aligned}
W_{f} & =\frac{2500}{2110} \times 0.3 \\
& =0.8294 \\
W_{m} & =\frac{1200}{2110} \times 0.3 \\
& =0.1706
\end{aligned} .
$$

Note that the sum of the mass fractions,

$$
\begin{aligned}
W_{f}+W_{m} & =0.8294+0.1706 \\
& =1.000
\end{aligned}
$$

3. The volume of composite is

$$
\begin{gathered}
v_{c}=\frac{w_{c}}{\rho_{c}} \\
=\frac{4}{2110} \\
=1.896 \times 10^{-3} \mathrm{~m}^{3} .
\end{gathered}
$$

4. The volume of the fiber is

$$
\begin{gathered}
v_{f}=V_{f} v_{c} \\
=(0.7)\left(1.896 \times 10^{-3}\right) \\
=1.327 \times 10^{-3} \mathrm{~m}^{3} .
\end{gathered}
$$

The volume of the matrix is

$$
v_{m}=V_{m} v_{c}
$$

$$
=0.5688 \times 10^{-3} \mathrm{~m}^{3} .
$$

The mass of the fiber is

$$
\begin{gathered}
w_{f}=\rho_{f} v_{f} \\
=(2500)\left(1.327 \times 10^{-3}\right) \\
=3.318 \mathrm{~kg} .
\end{gathered}
$$

The mass of the matrix is

$$
\begin{gathered}
w_{m}=\rho_{m} v_{m} \\
=(1200)\left(0.5688 \times 10^{-3}\right) \\
=0.6826 \mathrm{~kg} .
\end{gathered}
$$

3.2.4 Void Content

During the manufacture of a composite, voids are introduced in the composite as shown in Figure 3.2. This causes the theoretical density of the composite to be higher than the actual density. Also, the void content of a

composite is detrimental to its mechanical properties. These detriments include lower

- Shear stiffness and strength
- Compressive strengths
- Transverse tensile strengths
- Fatigue resistance
- Moisture resistance

A decrease of 2 to 10% in the preceding matrix-dominated properties generally takes place with every 1% increase in the void content. ${ }^{1}$

For composites with a certain volume of voids V_{v} the volume fraction of voids V_{v} is defined as

$$
\begin{equation*}
V_{v}=\frac{v_{v}}{v_{c}} . \tag{3.11}
\end{equation*}
$$

Then, the total volume of a composite $\left(v_{c}\right)$ with voids is given by

$$
\begin{equation*}
v_{c}=v_{f}+v_{m}+v_{v} . \tag{3.12}
\end{equation*}
$$

By definition of the experimental density $\rho_{c e}$ of a composite, the actual volume of the composite is

$$
\begin{equation*}
v_{c}=\frac{w_{c}}{\rho_{c e}}, \tag{3.13}
\end{equation*}
$$

and, by the definition of the theoretical density $\rho_{c t}$ of the composite, the theoretical volume of the composite is

$$
\begin{equation*}
v_{f}+v_{m}=\frac{w_{c}}{\rho_{c t}} . \tag{3.14}
\end{equation*}
$$

Then, substituting the preceding expressions (3.13) and (3.14) in Equation (3.12),

$$
\frac{w_{c}}{\rho_{c e}}=\frac{w_{c}}{\rho_{c t}}+v_{v} .
$$

id is given by
Dr. T. JAYACHANDRA PRASAD
ME.Ph.D. FIE.FETE,MNAFEN, MSTEMIEEE
PRINCIPAL

$$
\begin{equation*}
v_{v}=\frac{w_{c}}{\rho_{c e}}\left(\frac{\rho_{c t}-\rho_{c e}}{\rho_{c t}}\right) . \tag{3.15}
\end{equation*}
$$

Substituting Equation (3.13) and Equation (3.15) in Equation (3.11), the volume fraction of the voids is

$$
\begin{align*}
V_{v} & =\frac{v_{v}}{v_{c}} \tag{3.16}\\
& =\frac{\rho_{c t}-\rho_{c e}}{\rho_{c t}} .
\end{align*}
$$

Example 3.2

A graphite/epoxy cuboid specimen with voids has dimensions of $a \times b \times c$ and its mass is M_{c}. After it is put it into a mixture of sulfuric acid and hydrogen peroxide, the remaining graphite fibers have a mass M_{f}. From independent tests, the densities of graphite and epoxy are ρ_{f} and $\rho_{m^{\prime}}$, respectively. Find the volume fraction of the voids in terms of $a, b, c, M_{f}, M_{c}, \rho_{f}$, and ρ_{m}.

Solution

The total volume of the composite v_{c} is the sum total of the volume of fiber v_{f}, matrix v_{m}, and voids v_{v} :

$$
\begin{equation*}
v_{c}=v_{f}+v_{m}+v_{v} . \tag{3.17}
\end{equation*}
$$

From the definition of density,

$$
\begin{gather*}
v_{f}=\frac{M_{f}}{\rho_{f}}, \tag{3.18a}\\
v_{m}=\frac{M_{c}-M_{f}}{\rho_{m}} .
\end{gather*}
$$

The specimen is a cuboid, so the volume of the composite is

$$
v_{c}=a b c .
$$

$$
a b c=\frac{M_{f}}{\rho_{f}}+\frac{M_{c}-M_{f}}{\rho_{m}}+v_{v}
$$

and the volume fraction of voids then is

$$
\begin{equation*}
V_{v}=\frac{v_{v}}{a b c}=1-\frac{1}{a b c}\left[\frac{M_{f}}{\rho_{f}}+\frac{M_{c}-M_{f}}{\rho_{m}}\right] \tag{3.20}
\end{equation*}
$$

Alternative Solution

The preceding problem can also be solved by using Equation (3.16). The theoretical density of the composite is

$$
\begin{equation*}
\rho_{c t}=\rho_{f} V_{f}^{\prime}+\rho_{m}\left(1-V_{f}^{\prime}\right) \tag{3.21}
\end{equation*}
$$

where V_{f}^{\prime} is the theoretical fiber volume fraction given as

$$
V_{f}^{\prime}=\frac{\text { volume of fibers }}{\text { volume of fibers }+ \text { volume of matrix }}
$$

$$
\begin{equation*}
V_{f}^{\prime}=\frac{\frac{M_{f}}{\rho_{f}}}{\frac{M_{f}}{\rho_{f}}+\frac{M_{c}-M_{f}}{\rho_{m}}} . \tag{3.22}
\end{equation*}
$$

The experimental density of the composite is

$$
\begin{equation*}
\rho_{c e}=\frac{M_{c}}{a b c} \tag{3.23}
\end{equation*}
$$

Substituting Equation (3.21) through Equation (3.23) in the definition of void volume fractions given by Equation (3.16),

$$
\begin{equation*}
V_{v}=1-\frac{1}{a b c}\left[\frac{M_{f}}{\rho_{f}}+\frac{M_{c}-M_{f}}{\rho_{m}}\right] \tag{3.24}
\end{equation*}
$$

Fxnerimental determination: the fiber volume fractions
of the specimen is found by the liquid displacement method in which the sample is weighed in air and then in water. The density of the composite is given by

$$
\begin{equation*}
\rho_{c}=\frac{w_{c}}{w_{c}-w_{i}} \rho_{w}, \tag{3.25}
\end{equation*}
$$

where

$$
\begin{aligned}
& w_{c}=\text { weight of composite } \\
& w_{i}=\text { weight of composite when immersed in water } \\
& \rho_{w}=\text { density of water }\left(1000 \mathrm{~kg} / \mathrm{m}^{3} \text { or } 62.4 \mathrm{lb} / \mathrm{ft}^{3}\right)
\end{aligned}
$$

For specimens that float in water, a sinker is attached. The density of the composite is then found by

$$
\begin{equation*}
\rho_{c}=\frac{w_{c}}{w_{c}+w_{s}-w_{w}} \rho_{w}, \tag{3.26}
\end{equation*}
$$

where

$$
\begin{aligned}
w_{c} & =\text { weight of composite } \\
w_{s} & =\text { weight of sinker when immersed in water } \\
w_{w} & =\text { weight of sinker and specimen when immersed in water }
\end{aligned}
$$

The sample is then dissolved in an acid solution or burned. ${ }^{2}$ Glass-based composites are burned, and carbon and aramid-based composites are digested in solutions. Carbon and aramid-based composites cannot be burned because carbon oxidizes in air above $300^{\circ} \mathrm{C}\left(572^{\circ} \mathrm{F}\right)$ and the aramid fiber can decompose at high temperatures. Epoxy-based composites can be digested by nitric acid or a hot mixture of ethylene glycol and potassium hydroxide; polyamide- and phenolic resin-based composites use mixtures of sulfuric acid and hydrogen peroxide. When digestion or burning is complete, the remaining fibers are washed and dried several times and then weighed. The fiber and matrix weight fractions can be found using Equation (3.2). The densities of the fiber and the matrix are known; thus, one can use Equation (3.4) to determine the volume fraction of the constituents of the composite and Equation (3.8) to calculate the theoretical density of the composite.

3.3 Evaluation of the Four Elastic Moduli

As shown in Section 2.4.3, there are four elastic modu

- Longitudinal Young's modulus, E_{1}
- Transverse Young's modulus, E_{2}
- Major Poisson's ratio, v_{12}
- In-plane shear modulus, G_{12}

Three approaches for determining the four elastic moduli are discussed next.

3.3.1 Strength of Materials Approach

From a unidirectional lamina, take a representative volume element* that consists of the fiber surrounded by the matrix (Figure 3.3). This representative volume element (RVE) can be further represented as rectangular blocks. The fiber, matrix, and the composite are assumed to be of the same width, h, but of thicknesses t_{f}, t_{m}, and t_{c}, respectively. The area of the fiber is given by

$$
\begin{equation*}
A_{f}=t_{f} h . \tag{3.27a}
\end{equation*}
$$

The area of the matrix is given by

$$
\begin{equation*}
A_{m}=t_{m} h, \tag{3.27b}
\end{equation*}
$$

and the area of the composite is given by

$$
\begin{equation*}
A_{c}=t_{c} h . \tag{3.27c}
\end{equation*}
$$

The two areas are chosen in the proportion of their volume fractions so that the fiber volume fraction is defined as

$$
\begin{gather*}
V_{f}=\frac{A_{f}}{A_{c}} \tag{3.28a}\\
=\frac{t_{f}}{t_{c}}
\end{gather*}
$$

and the matrix fiber volume fraction V_{m} is

FIGURE 3.3
Representative volume element of a unidirectional lamina.

$$
\begin{gather*}
V_{m}=\frac{A_{m}}{A_{c}} \\
=\frac{t_{m}}{t_{c}} \tag{3.28b}\\
=1-V_{f} .
\end{gather*}
$$

The following assumptions are made in the strength of materials approach model:

- The bond between fibers and matrix is perfect.
- The elactic moduli, diameters, and space between re continuous and parallel.

Dr. T. JAYACHANDRA PRASAD UEPAD. FFIEF FETE MNNEENUSTEMIEEE PRINCIPAL

FIGURE 3.4

A longitudinal stress applied to the representative volume element to calculate the longitudinal Young's modulus for a unidirectional lamina.

- The fibers and matrix follow Hooke's law (linearly elastic).
- The fibers possess uniform strength.
- The composite is free of voids.

3.3.1.1 Longitudinal Young's Modulus

From Figure 3.4, under a uniaxial load F_{c} on the composite RVE, the load is shared by the fiber F_{f} and the matrix F_{m} so that

$$
\begin{equation*}
F_{c}=F_{f}+F_{m} . \tag{3.29}
\end{equation*}
$$

The loads taken by the fiber, the matrix, and the composite can be written in terms of the stresses in these components and cross-sectional areas of these components as

$$
\begin{align*}
& F_{c}=\sigma_{c} A_{c}, \tag{3.30a}\\
& F_{f}=\sigma_{f} A_{f}, \tag{3.30b}\\
& F_{m}=\sigma_{m} A_{m} \tag{3.30c}
\end{align*}
$$

where

$$
\sigma_{c, f, m}=\text { stress in composite, fiber, and matrix, respectively }
$$

$A_{c f, m}=$ area of composite, fiber, and matrix, respectively
Assuming that the fibers, matrix, and composite foll that the fibers and the matrix are isotropic, the stress-s and the composite is

Dr. T. JAYACHANDRA PRASAD

$$
\begin{align*}
& \sigma_{c}=E_{1} \varepsilon_{c}, \tag{3.31a}\\
& \sigma_{f}=E_{f} \varepsilon_{f}, \tag{3.31b}
\end{align*}
$$

and

$$
\begin{equation*}
\sigma_{m}=E_{m} \varepsilon_{m} \tag{3.31c}
\end{equation*}
$$

where

$$
\begin{aligned}
& \varepsilon_{c f, m}=\text { strains in composite, fiber, and matrix, respectively } \\
& E_{1, f, m}=\text { elastic moduli of composite, fiber, and matrix, respectively }
\end{aligned}
$$

Substituting Equation (3.30) and Equation (3.31) in Equation (3.29) yields

$$
\begin{equation*}
E_{1} \varepsilon_{c} A_{c}=E_{f} \varepsilon_{f} A_{f}+E_{m} \varepsilon_{m} A_{m} . \tag{3.32}
\end{equation*}
$$

The strains in the composite, fiber, and matrix are equal $\left(\varepsilon_{c}=\varepsilon_{f}=\varepsilon_{m}\right)$; then, from Equation (3.32),

$$
\begin{equation*}
E_{1}=E_{f} \frac{A_{f}}{A_{c}}+E_{m} \frac{A_{m}}{A_{c}} . \tag{3.33}
\end{equation*}
$$

Using Equation (3.28), for definitions of volume fractions,

$$
\begin{equation*}
E_{1}=E_{f} V_{f}+E_{m} V_{m} . \tag{3.34}
\end{equation*}
$$

Equation 3.34 gives the longitudinal Young's modulus as a weighted mean of the fiber and matrix modulus. It is also called the rule of mixtures.

The ratio of the load taken by the fibers F_{f} to the load taken by the composite F_{c} is a measure of the load shared by the fibers. From Equation (3.30) and Equation (3.31),

$$
\begin{equation*}
\frac{F_{f}}{F_{c}}=\frac{E_{f}}{E_{1}} V_{f} . \tag{3.35}
\end{equation*}
$$

In Figure 3.5, the ratio of the load carried by the fibers to the load taken by the composite is plotted as a function of fiber-to-mi ratio E_{f} / E_{m} for the constant fiber volume fraction V_{f}. It s]
' " ratio increases, the load taken by th

FIGURE 3.5
Fraction of load of composite carried by fibers as a function of fiber volume fraction for constant fiber to matrix moduli ratio.

Example 3.3

Find the longitudinal elastic modulus of a unidirectional glass/epoxy lamina with a 70% fiber volume fraction. Use the properties of glass and epoxy from Table 3.1 and Table 3.2, respectively. Also, find the ratio of the load taken by the fibers to that of the composite.

Solution

From Table 3.1, the Young's modulus of the fiber is

$$
E_{f}=85 \mathrm{GPa} .
$$

From Table 3.2, the Young's modulus of the matrix is

$$
E_{m}=3.4 \mathrm{GPa}
$$

Using Equation (3.34), the longitudinal elastic modulus of the unidirectional lamina is

$$
\begin{aligned}
E_{1} & =(85)(0.7)+(3.4)(0.3) \\
& =60.52 \mathrm{GPa} .
\end{aligned}
$$

3.35), the ratio of the load taken by th

$$
\begin{aligned}
& \text { Dr. T. JAYACHANDRA PRASAD } \\
& \text { MEP.D.FIEFETEMNAFENMSTEMIEEE } \\
& \text { PRINCIPAL } \\
& \text { R G M College of Engg. \& Tech., } \\
& \text { (Autonomous) } \\
& \text { NANDYAL-518501, Kurnool (Dt), A.P. }
\end{aligned}
$$

FIGURE 3.6
Longitudinal Young's modulus as function of fiber volume fraction and comparison with experimental data points for a typical glass/polyester lamina. (Experimental data points reproduced with permission of ASM International.)

$$
\begin{aligned}
\frac{F_{f}}{F_{c}} & =\frac{85}{60.52}(0.7) \\
& =0.9831 .
\end{aligned}
$$

Figure 3.6 shows the linear relationship between the longitudinal Young's modulus of a unidirectional lamina and fiber volume fraction for a typical graphite/epoxy composite per Equation (3.34). It also shows that Equation (3.34) predicts results that are close to the experimental data points. ${ }^{3}$

3.3.1.2 Transverse Young's Modulus

Assume now that, as shown in Figure 3.7, the composite is stressed in the transverse direction. The fibers and matrix are again represented by rectangular blocks as shown. The fiber, the matrix, and composite stresses are equal. Thus,

$$
\begin{equation*}
\sigma_{c}=\sigma_{f}=\sigma_{m} \tag{3.36}
\end{equation*}
$$

where $\sigma_{c f, m}=$ stress in composite, fiber, and matrix, res rerse extension in the composite Δ_{c} is i the fiber Δ_{f}, and that is the matrix,,

FIGURE 3.7

A transverse stress applied to a representative volume element used to calculate transverse Young's modulus of a unidirectional lamina.

$$
\begin{equation*}
\Delta_{c}=\Delta_{f}+\Delta_{m} \tag{3.37}
\end{equation*}
$$

Now, by the definition of normal strain,

$$
\begin{align*}
\Delta_{c} & =t_{c} \varepsilon_{c} \tag{3.38a}\\
\Delta_{f} & =t_{f} \varepsilon_{f} \tag{3.38b}
\end{align*}
$$

and

$$
\begin{equation*}
\Delta_{m}=t_{m} \varepsilon_{m}, \tag{3.38c}
\end{equation*}
$$

where

$$
t_{c, f, m}=\text { thickness of the composite, fiber and matrix, respectively }
$$

$\varepsilon_{c f, m}=$ normal transverse strain in the composite, fiber, and matrix, respectively

Also, by using Hooke's law for the fiber, matrix, and composite, the normal strains in the composite, fiber, and matrix are

$$
\begin{align*}
& \varepsilon_{c}=\frac{\sigma_{c}}{E_{2}} \tag{3.39a}\\
& \varepsilon_{f}=\frac{\sigma_{f}}{E_{f}} \tag{3.39b}
\end{align*}
$$

and

$$
\varepsilon_{m}=\frac{\sigma_{m}}{E_{m}}
$$

Substituting Equation (3.38) and Equation (3.39) in Equation (3.37) and using Equation (3.36) gives

$$
\begin{equation*}
\frac{1}{E_{2}}=\frac{1}{E_{f}} \frac{t_{f}}{t_{c}}+\frac{1}{E_{m}} \frac{t_{m}}{t_{c}} . \tag{3.40}
\end{equation*}
$$

Because the thickness fractions are the same as the volume fractions as the other two dimensions are equal for the fiber and the matrix (see Equation 3.28):

$$
\begin{equation*}
\frac{1}{E_{2}}=\frac{V_{f}}{E_{f}}+\frac{V_{m}}{E_{m}} . \tag{3.41}
\end{equation*}
$$

Equation (3.41) is based on the weighted mean of the compliance of the fiber and the matrix.

Example 3.4

Find the transverse Young's modulus of a glass/epoxy lamina with a fiber volume fraction of 70%. Use the properties of glass and epoxy from Table 3.1 and Table 3.2, respectively.

Solution

From Table 3.1, the Young's modulus of the fiber is

$$
E_{f}=85 \mathrm{GPa} .
$$

From Table 3.2, the Young's modulus of the matrix is

$$
E_{m}=3.4 \mathrm{GPa} .
$$

Using Equation (3.41), the transverse Young's modulus, E_{2}, is

$$
\begin{aligned}
& \frac{1}{E_{2}}=\frac{0.7}{85}+\frac{0.3}{3.4}, \\
& E_{2}=10.37 \mathrm{GPa}
\end{aligned}
$$

Figure 3.8 plots the transverse Young's modulus as a function of fiber volume fraction for constant fiber-to-matrix elastic moduli ratio, E_{f} / E_{m}. For metal and ceramic matrix composites, the fiber and matrix plactir modıli are of the same order. (For example, for a SiC /alur composite, $E_{f} / E_{m}=4$ and for a SiC/CAS ceramic matri

Young's modulus of the composite i ; a function of the fiber volume fracti

FIGURE 3.8
Transverse Young's modulus as a function of fiber volume fraction for constant fiber to matrix moduli ratio.

For polymeric composites, the fiber-to-matrix moduli ratio is very high. (For example, for a glass/epoxy polymer matrix composite, $E_{f} / E_{m}=25$). The transverse Young's modulus of the composite in such cases changes appreciably only for large fiber volume fractions. Figure 3.8 shows that, for high E_{f} / E_{m} ratios, the contribution of the fiber modulus only increases substantially for a fiber volume fraction greater than 80%. These fiber volume fractions are not practical and in many cases are physically impossible due to the geometry of fiber packing. Figure 3.9 shows various possibilities of fiber packing. Note that the ratio of the diameter, d, to fiber spacing, $s, d / s$ varies with geometrical packing. For circular fibers with square array packing (Figure 3.9a),

$$
\begin{equation*}
\frac{d}{s}=\left(\frac{4 V_{f}}{\pi}\right)^{1 / 2} \tag{3.42a}
\end{equation*}
$$

This gives a maximum fiber volume fraction of 78.54% as $s \geq d$. For circular fibers with hexagonal array packing (Figure 3.9b),

$$
\frac{d}{s}=\left(\frac{2 \sqrt{3} V_{f}}{\pi}\right)^{1 / 2}
$$

FIGURE 3.9
Fiber to fiber spacing in (a) square packing geometry and (b) hexagonal packing geometry.

This gives a maximum fiber volume fraction of 90.69% because $s \geq d$. These maximum fiber volume fractions are not practical to use because the fibers touch each other and thus have surfaces where the matrix cannot wet out the fibers.

In Figure 3.10, the transverse Young's modulus is plotted as a function of fiber volume fraction using Equation (3.41) for a typical boron/epoxy lamina. Also given are the experimental data points. ${ }^{4}$ In Figure $こ$ and analytical results are not as close to each other lg^{\prime} 's modulus in Figure 3.6.

$$
\begin{aligned}
& \text { Dr. T. JAYACHANDRA PRASAD } \\
& \text { ME.Ph.D.FIEFETEMNAFEN,USTEMIEEE } \\
& \text { PRINCIPAL } \\
& \text { R G M College of Engg, \& Tech., } \\
& \text { (Autonomous) } \\
& \text { NANDYAL-518501, Kurnool (Dt), A.P. }
\end{aligned}
$$

FIGURE 3.10
Theoretical values of transverse Young's modulus as a function of fiber volume fraction for a Boron/Epoxy unidirectional lamina ($E_{f}=414 \mathrm{GPa}, \mathrm{v}_{f}=0.2, E_{m}=4.14 \mathrm{GPa}, \mathrm{v}_{m}=0.35$) and comparison with experimental values. Figure (b) zooms figure (a) between 0.45 and 0.75 . (Experimental data from Hashin, Z., NASA ter 8818 Novemher 197n.)

FIGURE 3.11
A longitudinal stress applied to a representative volume element to calculate Poisson's ratio of unidirectional lamina.

3.3.1.3 Major Poisson's Ratio

The major Poisson's ratio is defined as the negative of the ratio of the normal strain in the transverse direction to the normal strain in the longitudinal direction, when a normal load is applied in the longitudinal direction. Assume a composite is loaded in the direction parallel to the fibers, as shown in Figure 3.11. The fibers and matrix are again represented by rectangular blocks. The deformations in the transverse direction of the composite $\left(\delta_{c}^{T}\right)$ is the sum of the transverse deformations of the fiber $\left(\delta_{f}^{T}\right)$ and the matrix $\left(\delta_{m}^{T}\right)$ as

$$
\begin{equation*}
\delta_{c}^{T}=\delta_{f}^{T}+\delta_{m}^{T} \tag{3.43}
\end{equation*}
$$

Using the definition of normal strains,

$$
\begin{equation*}
\varepsilon_{f}^{T}=\frac{\delta_{f}^{T}}{t_{f}}, \tag{3.44a}
\end{equation*}
$$

$$
\varepsilon_{m}^{T}=\frac{\delta_{m}^{T}}{t_{m}}
$$

and

$$
\begin{equation*}
\varepsilon_{c}^{T}=\frac{\delta_{c}^{T}}{t_{c}} \tag{3.44c}
\end{equation*}
$$

where $\varepsilon_{c, f, m}=$ transverse strains in composite, fiber, and matrix, respectively. Substituting Equation (3.44) in Equation (3.43),

$$
\begin{equation*}
t_{c} \varepsilon_{c}^{T}=t_{f} \varepsilon_{f}^{T}+t_{m} \varepsilon_{m}^{T} \tag{3.45}
\end{equation*}
$$

The Poisson's ratios for the fiber, matrix, and composite, respectively, are

$$
\begin{align*}
& \mathrm{v}_{f}=-\frac{\varepsilon_{f}^{T}}{\varepsilon_{f}^{L}} \tag{3.46a}\\
& \mathrm{v}_{m}=-\frac{\varepsilon_{m}^{T}}{\varepsilon_{m}^{L}} \tag{3.46b}
\end{align*}
$$

and

$$
\begin{equation*}
v_{12}=-\frac{\varepsilon_{c}^{T}}{\varepsilon_{c}^{L}} \tag{3.46c}
\end{equation*}
$$

Substituting in Equation (3.45),

$$
\begin{equation*}
-t_{c} v_{12} \varepsilon_{c}^{L}=-t_{f} v_{f} \varepsilon_{f}^{L}-t_{m} v_{m} \varepsilon_{m}^{L} \tag{3.47}
\end{equation*}
$$

where

$$
\begin{aligned}
& v_{12, f, m} v_{12} 2 f, m=\text { Poisson's ratio of composite, fiber, and matrix, respectively } \\
& \varepsilon_{c, f, m}^{L}=\text { longitudinal strains of composite, fiber and matrix, respec- } \\
& \text { tively }
\end{aligned}
$$

However, the strains in the composite, fiber, and matrix are assumed to be the equal in the longitudinal direction $\left(\varepsilon_{c}^{L}=\varepsilon_{f}^{L}=\varepsilon_{m}^{L}\right)$, which, from Equation (3.47), gives

$$
\begin{aligned}
& t_{c} v_{12}=t_{f} v_{f}+t_{m} v_{m} \\
& v_{12}=v_{f} \frac{t_{f}}{t_{c}}+v_{m} \frac{t_{m}}{t_{c}}
\end{aligned}
$$

Because the thickness fractions are the same as the volume fractions, per Equation (3.28),

$$
\begin{equation*}
v_{12}=v_{f} V_{f}+v_{m} V_{m} \tag{3.49}
\end{equation*}
$$

Example 3.5

Find the major and minor Poisson's ratio of a glass/epoxy lamina with a 70% fiber volume fraction. Use the properties of glass and epoxy from Table 3.1 and Table 3.2, respectively.

Solution

From Table 3.1, the Poisson's ratio of the fiber is

$$
v_{f}=0.2
$$

From Table 3.2, the Poisson's ratio of the matrix is

$$
v_{m}=0.3
$$

Using Equation (3.49), the major Poisson's ratio is

$$
\begin{gathered}
v_{12}=(0.2)(0.7)+(0.3)(0.3) \\
=0.230
\end{gathered}
$$

From Example 3.3, the longitudinal Young's modulus is

$$
E_{1}=60.52 \mathrm{GPa}
$$

and, from Example 3.4, the transverse Young's modulus is

$$
E_{2}=10.37 \mathrm{GPa}
$$

Then, the minor Poisson's ratio from Equation (2.83) is

$$
\begin{gathered}
v_{21}=v_{12} \frac{E_{2}}{E_{1}} \\
=0.230\left(\frac{10.37}{60.52}\right) \\
=0.03941 .
\end{gathered}
$$

3.3.1.4 In-Plane Shear Modulus

ar stress τ_{c} to a lamina as shown in F
presented by rectangular blocks as \leqslant

FIGURE 3.12
An in-plane shear stress applied to a representative volume element for finding in-plane shear modulus of a unidirectional lamina.
shear deformations of the composite δ_{c} the fiber δ_{f}, and the matrix δ_{m} are related by

$$
\begin{equation*}
\delta_{c}=\delta_{f}+\delta_{m} \tag{3.50}
\end{equation*}
$$

From the definition of shear strains,

$$
\begin{align*}
& \delta_{c}=\gamma_{c} t_{c}, \tag{3.51a}\\
& \delta_{f}=\gamma_{f} t_{f}, \tag{3.51b}
\end{align*}
$$

and

$$
\begin{equation*}
\delta_{m}=\gamma_{m} t_{m}, \tag{3.51c}
\end{equation*}
$$

where
$\gamma_{c f, m}=$ shearing strains in the composite, fiber, and matrix, respectively
$t_{c, f, m}=$ thickness of the composite, fiber, and matrix, respectively.
From Hooke's law for the fiber, the matrix, and the composite,

$$
\begin{align*}
& \gamma_{c}=\frac{\tau_{c}}{G_{12}}, \tag{3.52a}\\
& \gamma_{f}=\frac{\tau_{f}}{G_{f}},
\end{align*}
$$

$$
\begin{equation*}
\gamma_{m}=\frac{\tau_{m}}{G_{m}} \tag{3.52c}
\end{equation*}
$$

where $G_{12, f, m}=$ shear moduli of composite, fiber, and matrix, respectively.
From Equation (3.50) through Equation (3.52),

$$
\begin{equation*}
\frac{\tau_{c}}{G_{12}} t_{c}=\frac{\tau_{f}}{G_{f}} t_{f}+\frac{\tau_{m}}{G_{m}} t_{m} . \tag{3.53}
\end{equation*}
$$

The shear stresses in the fiber, matrix, and composite are assumed to be equal ($\tau_{c}=\tau_{f}=\tau_{m}$), giving

$$
\begin{equation*}
\frac{1}{G_{12}}=\frac{1}{G_{f}} \frac{t_{f}}{t_{c}}+\frac{1}{G_{m}} \frac{t_{m}}{t_{c}} \tag{3.54}
\end{equation*}
$$

Because the thickness fractions are equal to the volume fractions, per Equation (3.28),

$$
\begin{equation*}
\frac{1}{G_{12}}=\frac{V_{f}}{G_{f}}+\frac{V_{m}}{G_{m}} . \tag{3.55}
\end{equation*}
$$

Example 3.6

Find the in-plane shear modulus of a glass/epoxy lamina with a 70% fiber volume fraction. Use properties of glass and epoxy from Table 3.1 and Table 3.2, respectively.

Solution

The glass fibers and the epoxy matrix have isotropic properties. From Table 3.1, the Young's modulus of the fiber is

$$
E_{f}=85 \mathrm{GPa}
$$

and the Poisson's ratio of the fiber is

$$
v_{f}=0.2 .
$$

The shear modulus of the fiber

$$
\begin{aligned}
& G_{f}=\frac{E_{f}}{2\left(1+v_{f}\right)} \\
&=\frac{85}{2(1+0.2)} \\
&=35.42 \mathrm{GPa} .
\end{aligned}
$$

From Table 3.2, the Young's modulus of the matrix is

$$
E_{m}=3.4 \mathrm{GPa}
$$

and the Poisson's ratio of the fiber is

$$
v_{m}=0.3 .
$$

The shear modulus of the matrix is

$$
\begin{gathered}
G_{m}=\frac{E_{m}}{2\left(1+v_{m}\right)} \\
=\frac{3.40}{2(1+0.3)} \\
=1.308 \mathrm{GPa}
\end{gathered}
$$

From Equation (3.55), the in-plane shear modulus of the unidirectional lamina is

$$
\begin{aligned}
\frac{1}{G_{12}} & =\frac{0.70}{35.42}+\frac{0.30}{1.308} \\
G_{12} & =4.014 \mathrm{GPa} .
\end{aligned}
$$

Figure 3.13a and Figure 3.13b show the analytical values from Equation (3.55) of the in-plane shear modulus as a function of fiber volume fraction for a typical glass/epoxy lamina. Experimental values ${ }^{4}$ are also plotted in the same figure.

3.3.2 Semi-Empirical Models

The values obtained for transverse Young's modulus and in-plane shear modulus through Equation (3.41) and Equation (3.55), respectively, do not agree well with the experimental results shown in Figure 3.10 and Figure 3.13. This establishes a need for better modeling techniques. These techniques include numerical methods, such as finite element and finite difference, and boundary element methods, elasticity solution, and variational principal models. ${ }^{5}$ Unfortunately, these models are available only as complicated equations or in graphical form. Due to these difficulties, semi-empirical models have been developed for design purposes. The most useful of these models include those of Halphin and Tsai ${ }^{6}$ because the wide range of elastic properties and fiber volume fract

Halnhin and Taai ${ }^{6}$ developed their models as simple equ

FIGURE 3.13
Theoretical values of in-plane shear modulus as a function of fiber volume fraction and comparison with experimental values for a unidirectional glass/epoxy lamina ($G_{r}=30.19 \mathrm{GPa} C_{r}$ $=1.83 \mathrm{GPa}$). Figure (b) zooms figure (a) for fiber volume fractio (Experimental data from Hashin, Z., NASA tech. rep. contract No. NA

3.3.2.1 Longitudinal Young's Modulus

The Halphin-Tsai equation for the longitudinal Young's modulus, E_{1}, is the same as that obtained through the strength of materials approach - that is,

$$
\begin{equation*}
E_{1}=E_{f} V_{f}+E_{m} V_{m} . \tag{3.56}
\end{equation*}
$$

3.3.2.2 Transverse Young's Modulus

The transverse Young's modulus, E_{2}, is given by ${ }^{6}$

$$
\begin{equation*}
\frac{E_{2}}{E_{m}}=\frac{1+\xi \eta V_{f}}{1-\eta V_{f}}, \tag{3.57}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=\frac{\left(E_{f} / E_{m}\right)-1}{\left(E_{f} / E_{m}\right)+\xi} . \tag{3.58}
\end{equation*}
$$

The term ξ is called the reinforcing factor and depends on the following:

- Fiber geometry
- Packing geometry
- Loading conditions

Halphin and Tsai ${ }^{6}$ obtained the value of the reinforcing factor ξ by comparing Equation (3.57) and Equation (3.58) to the solutions obtained from the elasticity solutions. For example, for a fiber geometry of circular fibers in a packing geometry of a square array, $\xi=2$. For a rectangular fiber crosssection of length a and width b in a hexagonal array, $\xi=2(a / b)$, where b is in the direction of loading. ${ }^{6}$ The concept of direction of loading is illustrated in Figure 3.14.

Example 3.7

Find the transverse Young's modulus for a glass/epoxy lamina with a 70% fiber volume fraction. Use the properties for glass and epoxy from Table 3.1 and Table 3.2, respectively. Use Halphin-Tsai equations for a circular fiber in a square array packing geometry.

Solution

; are circular and packed in a square
Table 3.1, the Young's modulus of th

FIGURE 3.14
Concept of direction of loading for calculation of transverse Young's modulus by Halphin-Tsai equations.

From Table 3.2, the Young's modulus of the matrix is $E_{m}=3.4$ GPa. From Equation (3.58),

$$
\begin{aligned}
\eta= & \frac{(85 / 3.4)-1}{(85 / 3.4)+2} \\
& =0.8889 .
\end{aligned}
$$

From Equation (3.57), the transverse Young's modulus of the unidirectional lamina is

$$
\begin{gathered}
\frac{E_{2}}{3.4}=\frac{1+2(0.8889)(0.7)}{1-(0.8889)(0.7)} \\
E_{2}=20.20 G P a .
\end{gathered}
$$

For the same problem, from Example 3.4, this value of E_{2} was found to be 10.37 GPa by the mechanics of materials approach.

Figure 3.15a and Figure 3.15b show the transverse Young's modulus as a function of fiber volume fraction for a typical boron/ennver enmnncito Tho Halphin-Tsai equations (3.57) and the mechanics of Equation (3.41) curves are shown and compared to exp

FIGURE 3.15
Theoretical values of transverse Young's modulus as a function of fiber volume fraction and comparison with experimental values for boron/epoxy unidirectional lamina ($E_{f}=414 \mathrm{GPa}, v_{f}$ $=0.2, E_{m}=4.14 \mathrm{GPa}, v_{m}=0.35$). Figure (b) zooms figure (a) for fiber volume fraction between 0.45 and 0.75. (Experimental data from Hashin, Z., NASA tech. rep. contract no. NAS1-8818, November 1970.)

$$
\begin{aligned}
& E_{f} / E_{m}=1 \text { implies } \eta=0, \text { (homogeneous medium) } \\
& E_{f} / E_{m} \rightarrow \infty \text { implies } \eta=1 \text { (rigid inclusions) } \\
& E_{f} / E_{m} \rightarrow 0 \text { implies } \eta=-\frac{1}{\xi} \text { (voids) }
\end{aligned}
$$

3.3.2.3 Major Poisson's Ratio

FIGURE 3.16
Concept of direction of loading to calculate in-plane shear modulus by Halphin-Tsai equations.

$$
\begin{equation*}
v_{12}=v_{f} V_{f}+v_{m} V_{m} . \tag{3.59}
\end{equation*}
$$

3.3.2.4 In-Plane Shear Modulus

The Halphin-Tsai ${ }^{6}$ equation for the in-plane shear modulus, G_{12}, is

$$
\begin{equation*}
\frac{G_{12}}{G_{m}}=\frac{1+\xi \eta V_{f}}{1-\eta V_{f}} \tag{3.60}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=\frac{\left(G_{f} / G_{m}\right)-1}{\left(G_{f} / G_{m}\right)+\xi} . \tag{3.61}
\end{equation*}
$$

The value of the reinforcing factor, ξ, depends on fiber geometry, packing geometry, and loading conditions. For example, for circular fibers in a square array, $\xi=1$. For a rectangular fiber cross-sectional area of length a and width b in a hexagonal array, $\xi=\sqrt{3} \log _{e}(a / b)$, where a is the direction of loading. The concept of the direction of loading ${ }^{7}$ is given in Figure 3.16.

The value of $\xi=1$ for circular fibers in a square array gives reasonable results only for fiber volume fractions of up to 0.5 . For example, for a typical glass/epoxy lamina with a fiber volume fraction of 0.75 , the value of inplane shear modulus using the Halphin-Tsai equation with $\xi=1$ is 30% lower than that given by elasticity solutions. Hewitt gested choosing a function,

$$
\xi=1+40 V_{f}^{10} .
$$

Example 3.8

Using Halphin-Tsai equations, find the shear modulus of a glass/epoxy composite with a 70% fiber volume fraction. Use the properties of glass and epoxy from Table 3.1 and Table 3.2, respectively. Assume that the fibers are circular and are packed in a square array. Also, get the value of the shear modulus by using Hewitt and Malherbe's ${ }^{8}$ formula for the reinforcing factor.

Solution

For Halphin-Tsai's equations with circular fibers in a square array, the reinforcing factor $\xi=1$. From Example 3.6, the shear modulus of the fiber is

$$
G_{f}=35.42 \mathrm{GPa}
$$

and the shear modulus of the matrix is

$$
G_{m}=1.308 \mathrm{GPa}
$$

From Equation (3.61),

$$
\begin{gathered}
\eta=\frac{(35.42 / 1.308)-1}{(35.42 / 1.308)+1} \\
=0.9288 .
\end{gathered}
$$

From Equation (3.60), the in-plane shear modulus is

$$
\begin{gathered}
\frac{G_{12}}{1.308}=\frac{1+(1)(0.9288)(0.7)}{1-(0.9288)(0.7)} \\
G_{12}=6.169 \mathrm{GPa} .
\end{gathered}
$$

For the same problem, the value of $G_{12}=4.013 \mathrm{GPa}$ was found by the mechanics of materials approach in Example 3.5.

Because the volume fraction is greater than 50%, Hewitt and Mahelbre ${ }^{8}$ suggested a reinforcing factor (Equation 3.62):

$$
\begin{gathered}
\xi=1+40 V_{f}^{10} \\
=1+40(0.7)^{10} \\
=2.130
\end{gathered}
$$

$$
\begin{gathered}
\eta=\frac{(35.42 / 1.308)-1}{(35.42 / 1.308)+2.130} \\
=0.8928
\end{gathered}
$$

From Equation (3.60), the in-plane shear modulus is

$$
\begin{gathered}
\frac{G_{12}}{1.308}=\frac{1+(2.130)(0.8928)(0.7)}{1-(0.8928)(0.7)} \\
G=8.130 \mathrm{GPa}
\end{gathered}
$$

Figure 3.17 a and Figure 3.17 b show the in-plane shear modulus as a function of fiber volume fraction for a typical glass/epoxy composite. The Hal-phin-Tsai equation (3.60) and the mechanics of materials approach, Equation (3.55) are shown and compared to the experimental ${ }^{4}$ data points.

3.3.3 Elasticity Approach

In addition to the strength of materials and semi-empirical equation approaches, expressions for the elastic moduli based on elasticity are also available. Elasticity accounts for equilibrium of forces, compatibility, and Hooke's law relationships in three dimensions; the strength of materials approach may not satisfy compatibility and/or account for Hooke's law in three dimensions, and semi-empirical approaches are just as the name implies - partly empirical.

The elasticity models described here are called composite cylinder assemblage (CCA) models. ${ }^{4,9-12}$ In a CCA model, one assumes the fibers are circular in cross-section, spread in a periodic arrangement, and continuous, as shown in Figure 3.18. Then the composite can be considered to be made of repeating elements called the representative volume elements (RVEs). The RVE is considered to represent the composite and respond the same as the whole composite does.

The RVE consists of a composite cylinder made of a single inner solid cylinder (fiber) bonded to an outer hollow cylinder (matrix) as shown in Figure 3.19. The radius of the fiber, a, and the outer radius of the matrix, b, are related to the fiber volume fraction, V_{f}, as

$$
\begin{equation*}
V_{f}=\frac{a^{2}}{b^{2}} . \tag{3.63}
\end{equation*}
$$

Annronriate houndary conditions are applied to thi tic moduli being evaluated.

UNIT-VI

an
ME,Ph.D.FIEFRETE MNAFEN, MSTEMIEEE
PRINCIPAL

[^1]
3

Micromechanical Analysis of a Lamina

Chapter Objectives

- Develop concepts of volume and weight fraction (mass fraction) of fiber and matrix, density, and void fraction in composites.
- Find the nine mechanical and four hygrothermal constants: four elastic moduli, five strength parameters, two coefficients of thermal expansion, and two coefficients of moisture expansion of a unidirectional lamina from the individual properties of the fiber and the matrix, fiber volume fraction, and fiber packing.
- Discuss the experimental characterization of the nine mechanical and four hygrothermal constants.

3.1 Introduction

In Chapter 2, the stress-strain relationships, engineering constants, and failure theories for an angle lamina were developed using four elastic moduli, five strength parameters, two coefficients of thermal expansion (CTE), and two coefficients of moisture expansion (CME) for a unidirectional lamina. These 13 parameters can be found experimentally by conducting several tension, compression, shear, and hygrothermal tests on unidirectional lamina (laminates). However, unlike in isotropic materials, experimental evaluation of these parameters is quite costly and time consuming because they are functions of several variables: the individual constituents of the composite material, fiber volume fraction, packing geometry, processing, etc. Thus, the need and motivation for developing analytical models to find these parameters are very important. In this chapter, we will develop simple relationships for the these parameters in terms of the stiffnesses, strengths, coefficients of thermal and moisture expansion of the individual constituents of a composite, fiber volume fraction, packing geometry, etc. An understanc ${ }^{*}$

FIGURE 3.1
A nonhomogeneous lamina with fibers and matrix approximated as a homogeneous lamina.
relationship, called micromechanics of lamina, helps the designer to select the constituents of a composite material for use in a laminated structure.

Because this text is for a first course in composite materials, details will be explained only for the simple models based on the mechanics of materials approach and the semi-empirical approach. Results from other methods based on advanced topics such as elasticity are also explained for completeness.

As mentioned in Chapter 2, a unidirectional lamina is not homogeneous. However, one can assume the lamina to be homogeneous by focusing on the average response of the lamina to mechanical and hygrothermal loads (Figure 3.1). The lamina is simply looked at as a material whose properties are different in various directions, but not different from one location to another.

Also, the chapter focuses on a unidirectional continuous fiber-reinforced lamina. This is because it forms the basic building block of a composite structure, which is generally made of several unidirectional laminae placed at various angles. The modeling in the evaluation of the parameters is discussed first. This is followed by examples and experimental methods for finding these parameters.

3.2 Volume and Mass Fractions, Density, and Void Content

Before modeling the 13 parameters of a unidirectional composite, we introduce the concept of relative fraction of fibers by volume. This concept is critical because theoretical formulas for finding the stiffness, strength, and hygrothermal properties of a unidirectional lamina are a function of fiber volume fraction. Measurements of the constituents are generally based on their mass, so fiber mass fractions must also be defined. Moreover, defining the density of a composite also becomes necessary because its value is used in the experimental determination of fiber volume and void fractions of a composite. Also, the value of density is used in the definition of specific modulus and specific strength in Chapter 1.

3.2.1 Volume Fractions

Consider a composite consisting of fiber and matrix. Take thr l notations:
$v_{c, f, m}=$ volume of composite, fiber, and matrix, respectively
$\rho_{\mathrm{c} f, m}=$ density of composite, fiber, and matrix, respectively.
Now define the fiber volume fraction V_{f} and the matrix volume fraction V_{m} as

$$
V_{f}=\frac{v_{f}}{v_{c}},
$$

and

$$
\begin{equation*}
V_{m}=\frac{v_{m}}{v_{c}} . \tag{3.1a,b}
\end{equation*}
$$

Note that the sum of volume fractions is

$$
V_{f}+V_{m}=1
$$

from Equation (3.1) as

$$
v_{f}+v_{m}=v_{c} .
$$

3.2.2 Mass Fractions

Consider a composite consisting of fiber and matrix and take the following symbol notation: $w_{c f, m}=$ mass of composite, fiber, and matrix, respectively. The mass fraction (weight fraction) of the fibers $\left(W_{f}\right)$ and the matrix $\left(W_{m}\right)$ are defined as

$$
\begin{gather*}
W_{f}=\frac{w_{f}}{w_{c}}, \text { and } \\
W_{m}=\frac{w_{m}}{w_{c}} \tag{3.2a,b}
\end{gather*}
$$

Note that the sum of mass fractions is

$$
W_{f}+W_{m}=1
$$

from Equation (3.2) as

$$
w_{f}+w_{m}=w_{c}
$$

From the definition of the density of a single material,

$$
\begin{align*}
& w_{c}=r_{c} v_{c}, \\
& w_{f}=r_{f} v_{f}, \text { and } \tag{3.3a-c}\\
& w_{m}=r_{m} v_{m} .
\end{align*}
$$

Substituting Equation (3.3) in Equation (3.2), the mass fractions and volume fractions are related as

$$
\begin{gather*}
W_{f}=\frac{\rho_{f}}{\rho_{c}} V_{f}, \text { and } \\
W_{m}=\frac{\rho_{m}}{\rho_{c}} V_{m} \tag{3.4a,b}
\end{gather*}
$$

in terms of the fiber and matrix volume fractions. In terms of individual constituent properties, the mass fractions and volume fractions are related by

$$
\begin{gather*}
W_{f}=\frac{\frac{\rho_{f}}{\rho_{m}}}{\frac{\rho_{f}}{\rho_{m}} V_{f}+V_{m}} V_{f}, \\
W_{m}=\frac{1}{\frac{\rho_{f}}{\rho_{m}}\left(1-V_{m}\right)+V_{m}} V_{m} . \tag{3.5a,b}
\end{gather*}
$$

One should always state the basis of calculating the fiber content of a composite. It is given in terms of mass or volume. Based on Equation (3.4), it is evident that volume and mass fractions are not equal ar mismatch between the mass and volume fractions increases a n the density of fiber and matrix differs from one.

3.2.3 Density

The derivation of the density of the composite in terms of volume fractions is found as follows. The mass of composite w_{c} is the sum of the mass of the fibers w_{f} and the mass of the matrix w_{m} as

$$
\begin{equation*}
w_{c}=w_{f}+w_{m} \tag{3.6}
\end{equation*}
$$

Substituting Equation (3.3) in Equation (3.6) yields

$$
\rho_{c} v_{c}=\rho_{f} v_{f}+\rho_{m} v_{m}
$$

and

$$
\begin{equation*}
\rho_{c}=\rho_{f} \frac{v_{f}}{v_{c}}+\rho_{m} \frac{v_{m}}{v_{c}} . \tag{3.7}
\end{equation*}
$$

Using the definitions of fiber and matrix volume fractions from Equation (3.1),

$$
\begin{equation*}
\rho_{c}=\rho_{f} V_{f}+\rho_{m} V_{m} \tag{3.8}
\end{equation*}
$$

Now, consider that the volume of a composite v_{c} is the sum of the volumes of the fiber v_{f} and matrix $\left(v_{m}\right)$:

$$
\begin{equation*}
v_{c}=v_{f}+v_{m} . \tag{3.9}
\end{equation*}
$$

The density of the composite in terms of mass fractions can be found as

$$
\begin{equation*}
\frac{1}{\rho_{c}}=\frac{W_{f}}{\rho_{f}}+\frac{W_{m}}{\rho_{m}} \tag{3.10}
\end{equation*}
$$

Example 3.1

A glass/epoxy lamina consists of a 70% fiber volume fraction. Use properties of glass and epoxy from Table 3.1* and Table 3.2, respectively, to determine the

[^2]
TABLE 3.1

Typical Properties of Fibers (SI System of Units)

Property	Units	Graphite	Glass	Aramid
Axial modulus	GPa	230	85	124
Transverse modulus	GPa	22	85	8
Axial Poisson's ratio	-	0.30	0.20	0.36
Transverse Poisson's ratio	-	0.35	0.20	0.37
Axial shear modulus	GPa	22	35.42	3
Axial coefficient of thermal expansion	$\mu \mathrm{m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$	-1.3	5	-5.0
Transverse coefficient of thermal expansion	$\mu \mathrm{m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$	7.0	5	4.1
Axial tensile strength	MPa	2067	1550	1379
Axial compressive strength	MPa	1999	1550	276
Transverse tensile strength	MPa	77	1550	7
Transverse compressive strength	MPa	42	1550	7
Shear strength	MPa	36	35	21
Specific gravity	-	1.8	2.5	1.4

TABLE 3.2
Typical Properties of Matrices (SI System of Units)

Property	Units	Epoxy	Aluminum	Polyamide
Axial modulus	GPa	3.4	71	3.5
Transverse modulus	GPa	3.4	71	3.5
Axial Poisson's ratio	-	0.30	0.30	0.35
Transverse Poisson's ratio	-	0.30	0.30	0.35
Axial shear modulus	GPa	1.308	27	1.3
Coefficient of thermal expansion	$\mu \mathrm{m} / \mathrm{m} /{ }^{\circ} \mathrm{C}$	63	23	90
Coefficient of moisture expansion	$\mathrm{m} / \mathrm{m} / \mathrm{kg} / \mathrm{kg}$	0.33	0.00	0.33
Axial tensile strength	MPa	72	276	54
Axial compressive strength	MPa	102	276	108
Transverse tensile strength	MPa	72	276	54
Transverse compressive strength	MPa	102	276	108
Shear strength	MPa	34	138	54
Specific gravity	-	1.2	2.7	1.2

1. Density of lamina

2. Mass fractions of the glass and epoxy
3. Volume of composite lamina if the mass of the lamina is 4 kg
4. Volume and mass of glass and epoxy in part (3)

Solution

1. From Table 3.1, the density of the fiber is

$$
\rho_{f}=2500 \mathrm{~kg} / \mathrm{m}^{3} .
$$

TABLE 3.3

Typical Properties of Fibers (USCS System of Units)

Property	Units	Graphite	Glass	Aramid
Axial modulus	Msi	33.35	12.33	17.98
Transverse modulus	Msi	3.19	12.33	1.16
Axial Poisson's ratio	-	0.30	0.20	0.36
Transverse Poisson's ratio	-	0.35	0.20	0.37
Axial shear modulus	Msi	3.19	5.136	0.435
Axial coefficient of thermal expansion	$\mu \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$	-0.7222	2.778	-2.778
Transverse coefficient of thermal expansion	$\mu \mathrm{in} . / \mathrm{in} . /{ }^{\circ} \mathrm{F}$	3.889	2.778	2.278
Axial tensile strength	ksi	299.7	224.8	200.0
Axial compressive strength	ksi	289.8	224.8	40.02
Transverse tensile strength	ksi	11.16	224.8	1.015
Transverse compressive strength	ksi	6.09	224.8	1.015
Shear strength	ksi	5.22	5.08	3.045
Specific gravity	-	1.8	2.5	1.4

TABLE 3.4

Typical Properties of Matrices (USCS System of Units)

Property	Units	Epoxy	Aluminumi	Polyamide
Axial modulus	Msi	0.493	10.30	0.5075
Transverse modulus	Msi	0.493	10.30	0.5075
Axial Poisson's ratio	-	0.30	0.30	0.35
Transverse Poisson's ratio	-	0.30	0.30	0.35
Axial shear modulus	Msi	0.1897	3.915	0.1885
Coefficient of thermal expansion	$\mu \mathrm{in} . / \mathrm{in} . /{ }^{\circ} \mathrm{F}$	35	12.78	50
Coefficient of moisture expansion	$\mathrm{in} . / \mathrm{in} . / \mathrm{lb} / \mathrm{lb}$	0.33	0.00	0.33
Axial tensile strength	ksi	10.44	40.02	7.83
Axial compressive strength	ksi	14.79	40.02	15.66
Transverse tensile strength	ksi	10.44	40.02	7.83
Transverse compressive strength	ksi	14.79	40.02	15.66
Shear strength	ksi	4.93	20.01	7.83
Specific gravity	-	1.2	2.7	1.2

From Table 3.2, the density of the matrix is

$$
\rho_{m}=1200 \mathrm{~kg} / \mathrm{m}^{3} .
$$

Using Equation (3.8), the density of the composite is

$$
\begin{gathered}
\rho_{c}=(2500)(0.7)+(1200)(0.3) \\
=2110 \mathrm{~kg} / \mathrm{m}^{3} .
\end{gathered}
$$

2. Using Equation (3.4), the fiber and matrix mass fractions a

$$
\begin{aligned}
& W_{f}=\frac{2500}{2110} \times 0.3 \\
&=0.8294 \\
& \begin{aligned}
W_{m} & =\frac{1200}{2110} \times 0.3 \\
& =0.1706
\end{aligned} .
\end{aligned}
$$

Note that the sum of the mass fractions,

$$
\begin{aligned}
W_{f}+W_{m} & =0.8294+0.1706 \\
& =1.000
\end{aligned}
$$

3. The volume of composite is

$$
\begin{gathered}
v_{c}=\frac{w_{c}}{\rho_{c}} \\
=\frac{4}{2110} \\
=1.896 \times 10^{-3} \mathrm{~m}^{3} .
\end{gathered}
$$

4. The volume of the fiber is

$$
\begin{gathered}
v_{f}=V_{f} v_{c} \\
=(0.7)\left(1.896 \times 10^{-3}\right) \\
=1.327 \times 10^{-3} \mathrm{~m}^{3} .
\end{gathered}
$$

The volume of the matrix is

$$
\begin{gathered}
v_{m}=V_{m} v_{c} \\
=(0.3)\left(0.1896 \times 10^{-3}\right)
\end{gathered}
$$

$$
=0.5688 \times 10^{-3} \mathrm{~m}^{3} .
$$

The mass of the fiber is

$$
\begin{gathered}
w_{f}=\rho_{f} v_{f} \\
=(2500)\left(1.327 \times 10^{-3}\right) \\
=3.318 \mathrm{~kg} .
\end{gathered}
$$

The mass of the matrix is

$$
\begin{gathered}
w_{m}=\rho_{m} v_{m} \\
=(1200)\left(0.5688 \times 10^{-3}\right) \\
=0.6826 \mathrm{~kg} .
\end{gathered}
$$

3.2.4 Void Content

During the manufacture of a composite, voids are introduced in the composite as shown in Figure 3.2. This causes the theoretical density of the composite to be higher than the actual density. Also, the void content of a

FIGURE 3.2
photnmirrographs of cross-section of a lamina with voids.
composite is detrimental to its mechanical properties. These detriments include lower

- Shear stiffness and strength
- Compressive strengths
- Transverse tensile strengths
- Fatigue resistance
- Moisture resistance

A decrease of 2 to 10% in the preceding matrix-dominated properties generally takes place with every 1% increase in the void content. ${ }^{1}$

For composites with a certain volume of voids V_{v} the volume fraction of voids V_{v} is defined as

$$
\begin{equation*}
V_{v}=\frac{v_{v}}{v_{c}} \tag{3.11}
\end{equation*}
$$

Then, the total volume of a composite $\left(v_{c}\right)$ with voids is given by

$$
\begin{equation*}
v_{c}=v_{f}+v_{m}+v_{v} \tag{3.12}
\end{equation*}
$$

By definition of the experimental density $\rho_{c e}$ of a composite, the actual volume of the composite is

$$
\begin{equation*}
v_{c}=\frac{w_{c}}{\rho_{c k}} \tag{3.13}
\end{equation*}
$$

and, by the definition of the theoretical density $\rho_{c t}$ of the composite, the theoretical volume of the composite is

$$
\begin{equation*}
v_{f}+v_{m}=\frac{w_{c}}{\rho_{c t}} \tag{3.14}
\end{equation*}
$$

Then, substituting the preceding expressions (3.13) and (3.14) in Equation (3.12),

$$
\frac{w_{c}}{\rho_{c e}}=\frac{w_{c}}{\rho_{c t}}+v_{v}
$$

The volume of void is given by

$$
\begin{equation*}
v_{v}=\frac{w_{c}}{\rho_{c e}}\left(\frac{\rho_{c l}-\rho_{c e}}{\rho_{c t}}\right) . \tag{3.15}
\end{equation*}
$$

Substituting Equation (3.13) and Equation (3.15) in Equation (3.11), the volume fraction of the voids is

$$
\begin{align*}
V_{v} & =\frac{v_{v}}{v_{c}} \tag{3.16}\\
& =\frac{\rho_{c t}-\rho_{c e}}{\rho_{c t}}
\end{align*}
$$

Example 3.2

A graphite/epoxy cuboid specimen with voids has dimensions of $a \times b \times c$ and its mass is M_{c}. After it is put it into a mixture of sulfuric acid and hydrogen peroxide, the remaining graphite fibers have a mass M_{f}. From independent tests, the densities of graphite and epoxy are ρ_{f} and ρ_{m}, respectively. Find the volume fraction of the voids in terms of $a, b, c, M_{f}, M_{c}, \rho_{f}$, and ρ_{m}.

Solution

The total volume of the composite v_{c} is the sum total of the volume of fiber v_{f}, matrix v_{m}, and voids v_{v} :

$$
\begin{equation*}
v_{c}=v_{f}+v_{m}+v_{v} . \tag{3.17}
\end{equation*}
$$

From the definition of density,

$$
\begin{gather*}
v_{f}=\frac{M_{f}}{\rho_{f}} \tag{3.18a}\\
v_{m}=\frac{M_{c}-M_{f}}{\rho_{m}} . \tag{3.18b}
\end{gather*}
$$

The specimen is a cuboid, so the volume of the composite is

$$
v_{c}=a b c .
$$

$$
a b c=\frac{M_{f}}{\rho_{f}}+\frac{M_{c}-M_{f}}{\rho_{m}}+v_{v}
$$

and the volume fraction of voids then is

$$
\begin{equation*}
V_{v}=\frac{v_{v}}{a b c}=1-\frac{1}{a b c}\left[\frac{M_{f}}{\rho_{f}}+\frac{M_{c}-M_{f}}{\rho_{m}}\right] \tag{3.20}
\end{equation*}
$$

Alternative Solution

The preceding problem can also be solved by using Equation (3.16). The theoretical density of the composite is

$$
\begin{equation*}
\rho_{c t}=\rho_{f} V_{f}^{\prime}+\rho_{m}\left(1-V_{f}^{\prime}\right) \tag{3.21}
\end{equation*}
$$

where V_{f}^{\prime} is the theoretical fiber volume fraction given as

$$
\begin{gather*}
V_{f}^{\prime}=\frac{\text { volume of fibers }}{\text { volume of fibers }+ \text { volume of matrix }} \\
V_{f}^{\prime}=\frac{\frac{M_{f}}{\rho_{f}}}{\frac{M_{f}}{\rho_{f}}+\frac{M_{c}-M_{f}}{\rho_{m}}} \tag{3.22}
\end{gather*}
$$

The experimental density of the composite is

$$
\begin{equation*}
\rho_{c e}=\frac{M_{c}}{a b c} . \tag{3.23}
\end{equation*}
$$

Substituting Equation (3.21) through Equation (3.23) in the definition of void volume fractions given by Equation (3.16),

$$
\begin{equation*}
V_{v}=1-\frac{1}{a b c}\left[\frac{M_{f}}{\rho_{f}}+\frac{M_{c}-M_{f}}{\rho_{m}}\right] \tag{3.24}
\end{equation*}
$$

Experimental determination: the fiber volume fractions of the con a romnosite are found generally by the burn or the acid digestion volve taking a sample of composite and weighing it. Then

Dr. T. JAYACHANDRA PRASAD
of the specimen is found by the liquid displacement method in which the sample is weighed in air and then in water. The density of the composite is given by

$$
\begin{equation*}
\rho_{c}=\frac{w_{c}}{w_{c}-w_{i}} \rho_{z} \tag{3.25}
\end{equation*}
$$

where

$$
\begin{aligned}
& w_{c}=\text { weight of composite } \\
& w_{i}=\text { weight of composite when immersed in water } \\
& \rho_{w}=\text { density of water }\left(1000 \mathrm{~kg} / \mathrm{m}^{3} \text { or } 62.4 \mathrm{lb} / \mathrm{ft}^{3}\right)
\end{aligned}
$$

For specimens that float in water, a sinker is attached. The density of the composite is then found by

$$
\begin{equation*}
\rho_{c}=\frac{w_{c}}{w_{c}+w_{s}-w_{w}} \rho_{w} \tag{3.26}
\end{equation*}
$$

where

$$
\begin{aligned}
w_{c} & =\text { weight of composite } \\
w_{s} & =\text { weight of sinker when immersed in water } \\
w_{w} & =\text { weight of sinker and specimen when immersed in water }
\end{aligned}
$$

The sample is then dissolved in an acid solution or burned. ${ }^{2}$ Glass-based composites are burned, and carbon and aramid-based composites are digested in solutions. Carbon and aramid-based composites cannot be burned because carbon oxidizes in air above $300^{\circ} \mathrm{C}\left(572^{\circ} \mathrm{F}\right)$ and the aramid fiber can decompose at high temperatures. Epoxy-based composites can be digested by nitric acid or a hot mixture of ethylene glycol and potassium hydroxide; polyamide- and phenolic resin-based composites use mixtures of sulfuric acid and hydrogen peroxide. When digestion or burning is complete, the remaining fibers are washed and dried several times and then weighed. The fiber and matrix weight fractions can be found using Equation (3.2). The densities of the fiber and the matrix are known; thus, one can use Equation (3.4) to determine the volume fraction of the constituents of the composite and Equation (3.8) to calculate the theoretical density of the composite.

3.3 Evaluation of the Four Elastic Moduli

As shown in Section 2.4.3, there are four elastic moduli of a un:

- Longitudinal Young's modulus, E_{1}
- Transverse Young's modulus, E_{2}
- Major Poisson's ratio, v_{12}
- In-plane shear modulus, G_{12}

Three approaches for determining the four elastic moduli are discussed next.

3.3.1 Strength of Materials Approach

From a unidirectional lamina, take a representative volume element* that consists of the fiber surrounded by the matrix (Figure 3.3). This representative volume element (RVE) can be further represented as rectangular blocks. The fiber, matrix, and the composite are assumed to be of the same width, h, but of thicknesses t_{f}, t_{m}, and t_{c}, respectively. The area of the fiber is given by

$$
\begin{equation*}
A_{f}=t_{f} h \tag{3.27a}
\end{equation*}
$$

The area of the matrix is given by

$$
\begin{equation*}
A_{m}=t_{m} h, \tag{3.27b}
\end{equation*}
$$

and the area of the composite is given by

$$
\begin{equation*}
A_{c}=t_{c} h . \tag{3.27c}
\end{equation*}
$$

The two areas are chosen in the proportion of their volume fractions so that the fiber volume fraction is defined as

$$
\begin{align*}
V_{f} & =\frac{A_{f}}{A_{c}} \tag{3.28a}\\
& =\frac{t_{f}}{t_{c}}
\end{align*}
$$

and the matrix fiber volume fraction V_{m} is

[^3]Dr. T. JAYACHANDRA PRASAD
UE. P. D. FIE FEIE MNWEENUSTEMIEEE
PRINCIPAL

Figure 3.3
Representative volume element of a unidirectional lamina.

$$
\begin{gather*}
V_{m}=\frac{A_{m}}{A_{c}} \\
=\frac{t_{m}}{t_{c}} \tag{3.28b}\\
=1-V_{f} .
\end{gather*}
$$

The following assumptions are made in the strength of materials approach model:

- The bond between fibers and matrix is perfect.
- The elastic moduli, diameters, and space between fibers are he fibers are continuous and parallel.

FIGURE 3.4
A longitudinal stress applied to the representative volume element to calculate the longitudinal Young's modulus for a unidirectional lamina.

- The fibers and matrix follow Hooke's law (linearly elastic).
- The fibers possess uniform strength.
- The composite is free of voids.

3.3.1.1 Longitudinal Young's Modulus

From Figure 3.4, under a uniaxial load F_{c} on the composite RVE, the load is shared by the fiber F_{f} and the matrix F_{m} so that

$$
\begin{equation*}
F_{c}=F_{f}+F_{m} . \tag{3.29}
\end{equation*}
$$

The loads taken by the fiber, the matrix, and the composite can be written in terms of the stresses in these components and cross-sectional areas of these components as

$$
\begin{align*}
& F_{c}=\sigma_{c} A_{c}, \tag{3.30a}\\
& F_{f}=\sigma_{f} A_{f}, \tag{3.30b}\\
& F_{m}=\sigma_{m} A_{m} \tag{3.30c}
\end{align*}
$$

where

$$
\sigma_{c f, m}=\text { stress in composite, fiber, and matrix, respectively }
$$

$$
A_{c, f, m}=\text { area of composite, fiber, and matrix, respectively }
$$

Assuming that the fibers, matrix, and composite follow Hooke's law and that the fibers and the matrix are isotropic, the stress-strain rela pach component and the composite is

$$
\begin{align*}
& \sigma_{c}=E_{1} \varepsilon_{c}, \tag{3.31a}\\
& \sigma_{f}=E_{f} \varepsilon_{f}, \tag{3.31b}
\end{align*}
$$

and

$$
\begin{equation*}
\sigma_{m}=E_{m} \varepsilon_{m}, \tag{3.31c}
\end{equation*}
$$

where

$$
\begin{aligned}
& \varepsilon_{c f, m}=\text { strains in composite, fiber, and matrix, respectively } \\
& E_{1, f, m}=\text { elastic moduli of composite, fiber, and matrix, respectively }
\end{aligned}
$$

Substituting Equation (3.30) and Equation (3.31) in Equation (3.29) yields

$$
\begin{equation*}
E_{1} \varepsilon_{c} A_{c}=E_{f} \varepsilon_{f} A_{f}+E_{m} \varepsilon_{m} A_{m} . \tag{3.32}
\end{equation*}
$$

The strains in the composite, fiber, and matrix are equal $\left(\varepsilon_{c}=\varepsilon_{f}=\varepsilon_{m}\right)$; then, from Equation (3.32),

$$
\begin{equation*}
E_{1}=E_{f} \frac{A_{f}}{A_{c}}+E_{m} \frac{A_{m}}{A_{c}} . \tag{3.33}
\end{equation*}
$$

Using Equation (3.28), for definitions of volume fractions,

$$
\begin{equation*}
E_{1}=E_{f} V_{f}+E_{m} V_{m} . \tag{3.34}
\end{equation*}
$$

Equation 3.34 gives the longitudinal Young's modulus as a weighted mean of the fiber and matrix modulus. It is also called the rule of mixtures.
The ratio of the load taken by the fibers F_{f} to the load taken by the composite F_{c} is a measure of the load shared by the fibers. From Equation (3.30) and Equation (3.31),

$$
\begin{equation*}
\frac{F_{f}}{F_{c}}=\frac{E_{f}}{E_{1}} V_{f} \tag{3.35}
\end{equation*}
$$

In Figure 3.5, the ratio of the load carried by the fibers to the load taken by the composite is plotted as a function of fiber-to-matrix Young's moduli ratio E_{f} / E_{m} for the constant fiber volume fraction V_{f}. It shows that to matrix moduli ratio increases, the load taken by the fiber in usly.

Figure 3.5
Fraction of load of composite carried by fibers as a function of fiber volume fraction for constant fiber to matrix moduli ratio.

Example 3.3

Find the longitudinal elastic modulus of a unidirectional glass/epoxy lamina with a 70% fiber volume fraction. Use the properties of glass and epoxy from Table 3.1 and Table 3.2, respectively. Also, find the ratio of the load taken by the fibers to that of the composite.

Solution

From Table 3.1, the Young's modulus of the fiber is

$$
E_{f}=85 \mathrm{GPa} .
$$

From Table 3.2, the Young's modulus of the matrix is

$$
E_{m}=3.4 \mathrm{GPa}
$$

Using Equation (3.34), the longitudinal elastic modulus of the unidirectional lamina is

$$
\begin{aligned}
E_{1} & =(85)(0.7)+(3.4)(0.3) \\
& =60.52 \mathrm{GPa}
\end{aligned}
$$

Using Equation (3.35), the ratio of the load taken by the fibers tc site is

FIGURE 3.6
Longitudinal Young's modulus as function of fiber volume fraction and comparison with experimental data points for a typical glass/polyester lamina. (Experimental data points reproduced with permission of ASM International.)

$$
\begin{aligned}
\frac{F_{f}}{F_{c}} & =\frac{85}{60.52}(0.7) \\
& =0.9831 .
\end{aligned}
$$

Figure 3.6 shows the linear relationship between the longitudinal Young's modulus of a unidirectional lamina and fiber volume fraction for a typical graphite/epoxy composite per Equation (3.34). It also shows that Equation (3.34) predicts results that are close to the experimental data points. ${ }^{3}$

3.3.1.2 Transverse Young's Modulus

Assume now that, as shown in Figure 3.7, the composite is stressed in the transverse direction. The fibers and matrix are again represented by rectangular blocks as shown. The fiber, the matrix, and composite stresses are equal. Thus,

$$
\begin{equation*}
\sigma_{c}=\sigma_{f}=\sigma_{m} \tag{3.36}
\end{equation*}
$$

where $\sigma_{c f, m}=$ stress in composite, fiber, and matrix, respectively.
Now, the transverse extension in the composite Δ_{c} is the sum c xtension in the fiber Δ_{f}, and that is the matrix, Δ_{m}.

FIGURE 3.7
A transverse stress applied to a representative volume element used to calculate transverse Young's modulus of a unidirectional lamina.

$$
\begin{equation*}
\Delta_{c}=\Delta_{f}+\Delta_{m} \tag{3.37}
\end{equation*}
$$

Now, by the definition of normal strain,

$$
\begin{align*}
& \Delta_{c}=t_{c} \varepsilon_{c} \tag{3.38a}\\
& \Delta_{f}=t_{f} \varepsilon_{f} \tag{3.38b}
\end{align*}
$$

and

$$
\begin{equation*}
\Delta_{m}=t_{m} \varepsilon_{m} \tag{3.38c}
\end{equation*}
$$

where

$$
\begin{aligned}
t_{c, f, m} & =\text { thickness of the composite, fiber and matrix, respectively } \\
\varepsilon_{c f, m m} & =\text { normal transverse strain in the composite, fiber, and matrix, } \\
& \text { respectively }
\end{aligned}
$$

Also, by using Hooke's law for the fiber, matrix, and composite, the normal strains in the composite, fiber, and matrix are

$$
\begin{align*}
& \varepsilon_{c}=\frac{\sigma_{c}}{E_{2}} \tag{3.39a}\\
& \varepsilon_{f}=\frac{\sigma_{f}}{E_{f}} \tag{3.39b}
\end{align*}
$$

and

$$
\varepsilon_{m}=\frac{\sigma_{m}}{E_{m}} .
$$

Substituting Equation (3.38) and Equation (3.39) in Equation (3.37) and using Equation (3.36) gives

$$
\begin{equation*}
\frac{1}{E_{2}}=\frac{1}{E_{f}} \frac{t_{f}}{t_{c}}+\frac{1}{E_{m}} \frac{t_{m}}{t_{c}} \tag{3.40}
\end{equation*}
$$

Because the thickness fractions are the same as the volume fractions as the other two dimensions are equal for the fiber and the matrix (see Equation 3.28):

$$
\begin{equation*}
\frac{1}{E_{2}}=\frac{V_{f}}{E_{f}}+\frac{V_{m}}{E_{m}} \tag{3.41}
\end{equation*}
$$

Equation (3.41) is based on the weighted mean of the compliance of the fiber and the matrix.

Example 3.4

Find the transverse Young's modulus of a glass/epoxy lamina with a fiber volume fraction of 70%. Use the properties of glass and epoxy from Table 3.1 and Table 3.2, respectively.

Solution

From Table 3.1, the Young's modulus of the fiber is

$$
E_{f}=85 \mathrm{GPa} .
$$

From Table 3.2, the Young's modulus of the matrix is

$$
E_{m}=3.4 \mathrm{GPa}
$$

Using Equation (3.41), the transverse Young's modulus, E_{2}, is

$$
\begin{aligned}
& \frac{1}{E_{2}}=\frac{0.7}{85}+\frac{0.3}{3.4} \\
& E_{2}=10.37 G P a .
\end{aligned}
$$

Figure 3.8 plots the transverse Young's modulus as a function of fiber volume fraction for constant fiber-to-matrix elastic moduli ratio, E_{f} / E_{m}. For metal and ceramic matrix composites, the fiber and matrix elastic moduli are of the same order. (For example, for a $\mathrm{SiC} /$ aluminum metal matrix composite, $E_{f} / E_{m}=4$ and for a $\mathrm{SiC} / \mathrm{CAS}$ ceramic matrix compos $)^{\text {) The transverse Young's modulus of the composite in such cas }}$ moothly as a function of the fiber volume fraction.

FIGURE 3.8
Transverse Young's modulus as a function of fiber volume fraction for constant fiber to matrix moduli ratio.

For polymeric composites, the fiber-to-matrix moduli ratio is very high. (For example, for a glass/epoxy polymer matrix composite, $E_{f} / E_{m}=25$). The transverse Young's modulus of the composite in such cases changes appreciably only for large fiber volume fractions. Figure 3.8 shows that, for high E_{f} / E_{m} ratios, the contribution of the fiber modulus only increases substantially for a fiber volume fraction greater than 80%. These fiber volume fractions are not practical and in many cases are physically impossible due to the geometry of fiber packing. Figure 3.9 shows various possibilities of fiber packing. Note that the ratio of the diameter, d, to fiber spacing, $s, d / s$ varies with geometrical packing. For circular fibers with square array packing (Figure 3.9a),

$$
\begin{equation*}
\frac{d}{s}=\left(\frac{4 V_{f}}{\pi}\right)^{1 / 2} . \tag{3.42a}
\end{equation*}
$$

This gives a maximum fiber volume fraction of 78.54% as $s \geq d$. For circular fibers with hexagonal array packing (Figure 3.9b),

$$
\frac{d}{s}=\left(\frac{2 \sqrt{3} V_{f}}{\pi}\right)^{1 / 2}
$$

FIGURE 3.9
Fiber to fiber spacing in (a) square packing geometry and (b) hexagonal packing geometry.

This gives a maximum fiber volume fraction of 90.69% because $s \geq d$. These maximum fiber volume fractions are not practical to use because the fibers touch each other and thus have surfaces where the matrix cannot wet out the fibers.
In Figure 3.10, the transverse Young's modulus is plotted as a function of fiber volume fraction using Equation (3.41) for a typical boron/epoxy lamina. Also given are the experimental data points. ${ }^{4}$ In Figure 3.10, the experimental and analytical results are not as close to each other as they longitudinal Young's modulus in Figure 3.6.

FIGURE 3.10
Theoretical values of transverse Young's modulus as a function of fiber volume fraction for a Boron/Epoxy unidirectional lamina ($E_{f}=414 \mathrm{GPa}, \mathrm{v}_{f}=0.2, E_{m}=4.14 \mathrm{GPa}, \mathrm{v}_{m}=0.35$) and comparison with experimental values. Figure (b) zooms figure (a) for fiber volume fraction between 0.45 and 0.75. (Experimental data from Hashin, Z., NASA tech. rep. contract no NAS1.. 8818, November 1970.)

Because the thickness fractions are the same as the volume fractions, per Equation (3.28),

$$
\begin{equation*}
\mathrm{v}_{12}=\mathrm{v}_{f} V_{f}+\mathrm{v}_{m} V_{m} . \tag{3.49}
\end{equation*}
$$

Example 3.5

Find the major and minor Poisson's ratio of a glass/epoxy lamina with a 70% fiber volume fraction. Use the properties of glass and epoxy from Table 3.1 and Table 3.2, respectively.

Solution

From Table 3.1, the Poisson's ratio of the fiber is

$$
v_{f}=0.2 .
$$

From Table 3.2, the Poisson's ratio of the matrix is

$$
v_{m}=0.3 .
$$

Using Equation (3.49), the major Poisson's ratio is

$$
\begin{gathered}
v_{12}=(0.2)(0.7)+(0.3)(0.3) \\
=0.230
\end{gathered}
$$

From Example 3.3, the longitudinal Young's modulus is

$$
E_{1}=60.52 \mathrm{GPa}
$$

and, from Example 3.4, the transverse Young's modulus is

$$
E_{2}=10.37 \mathrm{GPa} .
$$

Then, the minor Poisson's ratio from Equation (2.83) is

$$
\begin{gathered}
v_{21}=v_{12} \frac{E_{2}}{E_{1}} \\
=0.230\left(\frac{10.37}{60.52}\right) \\
=0.03941 .
\end{gathered}
$$

3.3.1.4 In-Plane Shear Modulus

Annlwr a pure shear stress τ_{c} to a lamina as shown in Figure 3.12 itrix are represented by rectangular blocks as shown. Th

FIGURE 3.12

An in-plane shear stress applied to a representative volume element for finding in-plane shear modulus of a unidirectional lamina.
shear deformations of the composite δ_{c} the fiber δ_{f}, and the matrix δ_{m} are related by

$$
\begin{equation*}
\delta_{c}=\delta_{f}+\delta_{m} \tag{3.50}
\end{equation*}
$$

From the definition of shear strains,

$$
\begin{align*}
& \delta_{c}=\gamma_{c} t_{c} \tag{3.51a}\\
& \delta_{f}=\gamma_{f} t_{f} \tag{3.51b}
\end{align*}
$$

and

$$
\begin{equation*}
\delta_{m}=\gamma_{m} t_{m}, \tag{3.51c}
\end{equation*}
$$

where
$\gamma_{c, f, m}=$ shearing strains in the composite, fiber, and matrix, respeclively
$t_{c f, m}=$ thickness of the composite, fiber, and matrix, respectively.
From Hooke's law for the fiber, the matrix, and the composite,

$$
\begin{align*}
& \gamma_{c}=\frac{\tau_{c}}{G_{12}}, \tag{3.52a}\\
& \gamma_{f}=\frac{\tau_{f}}{G_{f}}, \tag{3.52b}
\end{align*}
$$

$$
\begin{equation*}
\gamma_{m}=\frac{\tau_{m}}{G_{m}} \tag{3.52c}
\end{equation*}
$$

where $G_{12 f, m}=$ shear moduli of composite, fiber, and matrix, respectively.
From Equation (3.50) through Equation (3.52),

$$
\begin{equation*}
\frac{\tau_{c}}{G_{12}} t_{c}=\frac{\tau_{f}}{G_{f}} t_{f}+\frac{\tau_{m}}{G_{m}} t_{m} \tag{3.53}
\end{equation*}
$$

The shear stresses in the fiber, matrix, and composite are assumed to be equal ($\tau_{c}=\tau_{f}=\tau_{m}$), giving

$$
\begin{equation*}
\frac{1}{G_{12}}=\frac{1}{G_{f}} \frac{t_{f}}{t_{c}}+\frac{1}{G_{m}} \frac{t_{m}}{t_{c}} \tag{3.54}
\end{equation*}
$$

Because the thickness fractions are equal to the volume fractions, per Equation (3.28),

$$
\begin{equation*}
\frac{1}{G_{12}}=\frac{V_{f}}{G_{f}}+\frac{V_{m}}{G_{m}} \tag{3.55}
\end{equation*}
$$

Example 3.6

Find the in-plane shear modulus of a glass/epoxy lamina with a 70% fiber volume fraction. Use properties of glass and epoxy from Table 3.1 and Table 3.2 , respectively.

Solution

The glass fibers and the epoxy matrix have isotropic properties. From Table 3.1, the Young's modulus of the fiber is

$$
E_{f}=85 \mathrm{GPa}
$$

and the Poisson's ratio of the fiber is

$$
v_{f}=0.2
$$

The shear modulus of the fiber

$$
\begin{aligned}
& G_{f}=\frac{E_{f}}{2\left(1+v_{f}\right)} \\
&=\frac{85}{2(1+0.2)} \\
&=35.42 \mathrm{GPa}
\end{aligned}
$$

From Table 3.2, the Young's modulus of the matrix is

$$
E_{m}=3.4 \mathrm{GPa}
$$

and the Poisson's ratio of the fiber is

$$
v_{m}=0.3
$$

The shear modulus of the matrix is

$$
\begin{aligned}
& G_{m}=\frac{E_{m}}{2\left(1+v_{m}\right)} \\
&=\frac{3.40}{2(1+0.3)} \\
&=1.308 \mathrm{GPa}
\end{aligned}
$$

From Equation (3.55), the in-plane shear modulus of the unidirectional lamina is

$$
\begin{aligned}
\frac{1}{G_{12}} & =\frac{0.70}{35.42}+\frac{0.30}{1.308} \\
G_{12} & =4.014 \mathrm{GPa}
\end{aligned}
$$

Figure 3.13 a and Figure 3.13 b show the analytical values from Equation (3.55) of the in-plane shear modulus as a function of fiber volume fraction for a typical glass/epoxy lamina. Experimental values ${ }^{4}$ are also plotted in the same figure.

3.3.2 Semi-Empirical Models

The values obtained for transverse Young's modulus and in-plane shear modulus through Equation (3.41) and Equation (3.55), respectively, do not agree well with the experimental results shown in Figure 3.10 and Figure 3.13. This establishes a need for better modeling techniques. These techniques include numerical methods, such as finite element and finite difference, and boundary element methods, elasticity solution, and variational principal models. ${ }^{5}$ Unfortunately, these models are available only as complicated equations or in graphical form. Due to these difficulties, semi-empirical models have been developed for design purposes. The most useful of these models include those of Halphin and Tsai ${ }^{6}$ because they can be used over a wide range of elastic properties and fiber volume fractions.

Halphin and Tsai ${ }^{6}$ developed their models as simple equations by, ${ }^{t n}$ rocults that are based on elasticity. The equations are semi-empiris

FIGURE 3.13
Theoretical values of in-plane shear modulus as a function of fiber volume fraction and comparison with experimental values for a unidirectional glass/epoxy lamina ($G_{f}=30.19 \mathrm{GPa}, G_{m}$ $=1.83 \mathrm{GPa}$). Figure (b) zooms figure (a) for fiber volume fraction between 0.45 and 0.75 . (Experimental data from Hashin, Z., NASA tech. rep. contract No. NAS1-8818, No

3.3.2.1 Longitudinal Young's Modulus

The Halphin-Tsai equation for the longitudinal Young's modulus, E_{1}, is the same as that obtained through the strength of materials approach - that is,

$$
\begin{equation*}
E_{1}=E_{f} V_{f}+E_{m} V_{m} . \tag{3.56}
\end{equation*}
$$

3.3.2.2 Transverse Young's Modulus

The transverse Young's modulus, E_{2}, is given by ${ }^{6}$

$$
\begin{equation*}
\frac{E_{2}}{E_{m}}=\frac{1+\xi \eta V_{f}}{1-\eta V_{f}} \tag{3.57}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=\frac{\left(E_{f} / E_{m}\right)-1}{\left(E_{f} / E_{m}\right)+\xi} \tag{3.58}
\end{equation*}
$$

The term ξ is called the reinforcing factor and depends on the following:

- Fiber geometry
- Packing geometry
- Loading conditions

Halphin and Tsai ${ }^{6}$ obtained the value of the reinforcing factor ξ by comparing Equation (3.57) and Equation (3.58) to the solutions obtained from the elasticity solutions. For example, for a fiber geometry of circular fibers in a packing geometry of a square array, $\xi=2$. For a rectangular fiber crosssection of length a and width b in a hexagonal array, $\xi=2(a / b)$, where b is in the direction of loading. ${ }^{6}$ The concept of direction of loading is illustrated in Figure 3.14.

Example 3.7

Find the transverse Young's modulus for a glass/epoxy lamina with a 70% fiber volume fraction. Use the properties for glass and epoxy from Table 3.1 and Table 3.2, respectively. Use Halphin-Tsai equations for a circular fiber in a square array packing geometry.

Solution

Becarse the fibers are circular and packed in a square array, the

FIGURE 3.14
Concept of direction of loading for calculation of transverse Young's modulus by Halphin-Tsai equations.

From Table 3.2, the Young's modulus of the matrix is $E_{m}=3.4 \mathrm{GPa}$.
From Equation (3.58),

$$
\begin{aligned}
\eta= & \frac{(85 / 3.4)-1}{(85 / 3.4)+2} \\
& =0.8889 .
\end{aligned}
$$

From Equation (3.57), the transverse Young's modulus of the unidirectional lamina is

$$
\begin{gathered}
\frac{E_{2}}{3.4}=\frac{1+2(0.8889)(0.7)}{1-(0.8889)(0.7)} \\
E_{2}=20.20 G P a .
\end{gathered}
$$

For the same problem, from Example 3.4, this value of E_{2} was found to be 10.37 GPa by the mechanics of materials approach.

Figure 3.15a and Figure 3.15b show the transverse Young's modulus as a function of fiber volume fraction for a typical boron/epoxy composite. The Halphin-Tsai equations (3.57) and the mechanics of materials approach Equation (3.41) curves are shown and compared to experimental s
$\Delta \mathrm{c}$ mentioned previously, the parameters ξ and η have a physic: mole,

FIGURE 3.15
Theoretical values of transverse Young's modulus as a function of fiber volume fraction and comparison with experimental values for boron/epoxy unidirectional lamina ($E_{f}=414 \mathrm{GPa}, \mathrm{v}_{f}$ $=0.2, E_{m}=4.14 \mathrm{GPa}, v_{m}=0.35$). Figure (b) zooms figure (a) for fiber volume fraction between 0.45 and 0.75. (Experimental data from Hashin, Z., NASA tech. rep. contract no. NAS1-8818, November 1970.)

$$
\begin{aligned}
& E_{f} / E_{m}=1 \text { implies } \eta=0, \text { (homogeneous medium) } \\
& E_{f} / E_{m} \rightarrow \infty \text { implies } \eta=1 \text { (rigid inclusions) } \\
& E_{f} / E_{m} \rightarrow 0 \text { implies } \eta=-\frac{1}{\xi} \text { (voids) }
\end{aligned}
$$

3.3.2.3 Major Poisson's Ratio

The Halphin-Tsai equation for the major Poisson's ratio, v_{12}, is

FIGURE 3.16
Concept of direction of loading to calculate in-plane shear modulus by Halphin-Tsai equations.

$$
\begin{equation*}
v_{12}=v_{f} V_{f}+v_{m} V_{m} \tag{3.59}
\end{equation*}
$$

3.3.2.4 In-Plane Shear Modulus

The Halphin-Tsai ${ }^{6}$ equation for the in-plane shear modulus, G_{12}, is

$$
\begin{equation*}
\frac{G_{12}}{G_{m}}=\frac{1+\xi \eta V_{f}}{1-\eta V_{f}}, \tag{3.60}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=\frac{\left(G_{f} / G_{m}\right)-1}{\left(G_{f} / G_{m}\right)+\xi} . \tag{3.61}
\end{equation*}
$$

The value of the reinforcing factor, ξ, depends on fiber geometry, packing geometry, and loading conditions. For example, for circular fibers in a square array, $\xi=1$. For a rectangular fiber cross-sectional area of length a and width b in a hexagonal array, $\xi=\sqrt{3} \log _{e}(a / b)$, where a is the direction of loading. The concept of the direction of loading ${ }^{7}$ is given in Figure 3.16.
The value of $\xi=1$ for circular fibers in a square array gives reasonable results only for fiber volume fractions of up to 0.5 . For example, for a typical glass/epoxy lamina with a fiber volume fraction of 0.75 , the value of inplane shear modulus using the Halphin-Tsai equation with $\xi=1$ is 30% lower than that given by elasticity solutions. Hewitt and Malherbe ${ }^{8}$ suggested choosing a function,

$$
\xi=1+40 V_{f}^{10} .
$$

Dr. T. JAYACHANDRA PRASAD
ME.,Ph.D.FIEFRETEMNAFEN,MSTE,MEEE
PRINCIPAL

Example 3.8

Using Halphin-Tsai equations, find the shear modulus of a glass/epoxy composite with a 70% fiber volume fraction. Use the properties of glass and epoxy from Table 3.1 and Table 3.2, respectively. Assume that the fibers are circular and are packed in a square array. Also, get the value of the shear modulus by using Hewitt and Malherbe's ${ }^{8}$ formula for the reinforcing factor.

Solution

For Halphin-Tsai's equations with circular fibers in a square array, the reinforcing factor $\xi=1$. From Example 3.6, the shear modulus of the fiber is

$$
G_{f}=35.42 \mathrm{GPa}
$$

and the shear modulus of the matrix is

$$
G_{m}=1.308 \mathrm{GPa} .
$$

From Equation (3.61),

$$
\begin{gathered}
\eta=\frac{(35.42 / 1.308)-1}{(35.42 / 1.308)+1} \\
=0.9288 .
\end{gathered}
$$

From Equation (3.60), the in-plane shear modulus is

$$
\begin{gathered}
\frac{G_{12}}{1.308}=\frac{1+(1)(0.9288)(0.7)}{1-(0.9288)(0.7)} \\
G_{12}=6.169 \mathrm{GPa} .
\end{gathered}
$$

For the same problem, the value of $G_{12}=4.013 \mathrm{GPa}$ was found by the mechanics of materials approach in Example 3.5.

Because the volume fraction is greater than 50%, Hewitt and Mahelbre ${ }^{8}$ suggested a reinforcing factor (Equation 3.62):

$$
\begin{gathered}
\xi=1+40 V_{f}^{10} \\
=1+40(0.7)^{10} . \\
=2.130
\end{gathered}
$$

$$
\begin{gathered}
\eta=\frac{(35.42 / 1.308)-1}{(35.42 / 1.308)+2.130} \\
=0.8928
\end{gathered}
$$

From Equation (3.60), the in-plane shear modulus is

$$
\begin{gathered}
\frac{G_{12}}{1.308}=\frac{1+(2.130)(0.8928)(0.7)}{1-(0.8928)(0.7)} \\
G=8.130 \mathrm{GPa}
\end{gathered}
$$

Figure 3.17a and Figure 3.17 b show the in-plane shear modulus as a function of fiber volume fraction for a typical glass/epoxy composite. The Hal-phin-Tsai equation (3.60) and the mechanics of materials approach, Equation (3.55) are shown and compared to the experimental ${ }^{4}$ data points.

3.3.3 Elasticity Approach

In addition to the strength of materials and semi-empirical equation approaches, expressions for the elastic moduli based on elasticity are also available. Elasticity accounts for equilibrium of forces, compatibility, and Hooke's law relationships in three dimensions; the strength of materials approach may not satisfy compatibility and/or account for Hooke's law in three dimensions, and semi-empirical approaches are just as the name implies - partly empirical.

The elasticity models described here are called composite cylinder assemblage (CCA) models. ${ }^{4,-12}$ In a CCA model, one assumes the fibers are circular in cross-section, spread in a periodic arrangement, and continuous, as shown in Figure 3.18. Then the composite can be considered to be made of repeating elements called the representative volume elements (RVEs). The RVE is considered to represent the composite and respond the same as the whole composite does.

The RVE consists of a composite cylinder made of a single inner solid cylinder (fiber) bonded to an outer hollow cylinder (matrix) as shown in Figure 3.19. The radius of the fiber, a, and the outer radius of the matrix, b, are related to the fiber volume fraction, V_{f}, as

$$
\begin{equation*}
V_{f}=\frac{a^{2}}{b^{2}} . \tag{3.63}
\end{equation*}
$$

Appropriate boundary conditions are applied to this composi on the elastic moduli being evaluated.

[^4]\[

$$
\begin{aligned}
& \gamma_{23}=0 \\
& \gamma_{33}=0 \\
& \gamma_{12}=0
\end{aligned}
$$
\]

The Young's modulus in direction $1, E_{1}$, is defined as

$$
\begin{equation*}
E_{1} \equiv \frac{\sigma_{1}}{\varepsilon_{1}}=\frac{1}{S_{11}} \tag{2.55}
\end{equation*}
$$

The Poisson's ratio, v_{12}, is defined as

$$
\begin{equation*}
v_{12} \equiv-\frac{\varepsilon_{2}}{\varepsilon_{1}}=-\frac{S_{12}}{S_{11}} \tag{2.56}
\end{equation*}
$$

In general terms, $v_{i j}$ is defined as the ratio of the negative of the normal strain in direction j to the normal strain in direction i, when the load is applied in the normal direction i.

The Poisson's ratio v_{13} is defined as

$$
\begin{equation*}
v_{13} \equiv-\frac{\varepsilon_{3}}{\varepsilon_{1}}=-\frac{S_{13}}{S_{11}} . \tag{2.57}
\end{equation*}
$$

Similarly, as shown in Figure 2.16b, apply $\sigma_{1}=0, \sigma_{2}=0, \sigma_{3} \neq 0, \tau_{23}=0, \tau_{31}$ $=0, \tau_{12}=0$. Then, from Equation (2.26) and Equation (2.39),

$$
\begin{align*}
E_{2} & =\frac{1}{S_{22}} \tag{2.58}\\
v_{21} & =-\frac{S_{12}}{S_{22}} \tag{2.59}\\
v_{23} & =-\frac{S_{23}}{S_{22}} \tag{2.60}
\end{align*}
$$

Similarly, as shown in Figure 2.16c, apply $\sigma_{1}=0, \sigma_{2}=0, \sigma_{3} \neq 0, \tau_{23}=0, \tau_{31}$ $=0, \tau_{12}=0$. From Equation (2.26) and Equation (2.39),

$$
E_{3}=\frac{1}{S_{33}}
$$

$$
\begin{align*}
& v_{31}=-\frac{S_{13}}{S_{33}} \tag{2.62}\\
& v_{32}=-\frac{S_{23}}{S_{33}} \tag{2.63}
\end{align*}
$$

Apply, as shown in Figure 2.16d, $\sigma_{1}=0, \sigma_{2}=0, \sigma_{3}=0, \tau_{23} \neq 0, \tau_{31}=0, \tau_{12}$ $=0$. Then, from Equation (2.26) and Equation (2.39),

$$
\begin{gathered}
\varepsilon_{1}=0 \\
\varepsilon_{2}=0 \\
\varepsilon_{3}=0 \\
\gamma_{23}=S_{44} \tau_{23} \\
\gamma_{33}=0 \\
\gamma_{12}=0
\end{gathered}
$$

The shear modulus in plane $2-3$ is defined as

$$
\begin{equation*}
G_{23} \equiv \frac{\tau_{23}}{\gamma_{23}}=\frac{1}{S_{44}} . \tag{2.64}
\end{equation*}
$$

Similarly, as shown in Figure 2.16e, apply $\sigma_{1}=0, \sigma_{2}=0, \sigma_{3}=0, \tau_{23}=0, \tau_{31}$ $\neq 0, \tau_{12}=0$. Then, from Equation (2.26) and Equation (2.39),

$$
\begin{equation*}
G_{31}=\frac{1}{S_{55}} . \tag{2.65}
\end{equation*}
$$

Similarly, as shown in Figure 2.16f, apply $\sigma_{1}=0, \sigma_{2}=0, \sigma_{3}=0, \tau_{23}=0, \tau_{31}$ $=0, \tau_{12} \neq 0$. Then, from Equation (2.26) and Equation (2.39),

$$
\begin{equation*}
G_{12}=\frac{1}{S_{66}} \tag{2.66}
\end{equation*}
$$

In Equation (2.55) through Equation (2.66), 12 engineering constants have been defined as follows:
m-- e Young's moduli, E_{1}, E_{2}, and E_{3}, one in each material axi

Six Poisson's ratios, $v_{12}, v_{13}, v_{21}, v_{23}, v_{31}$, and v_{32}, two for each plane Three shear moduli, G_{23}, G_{31}, and G_{12}, one for each plane

However, the six Poisson's ratios are not independent of each other. For example, from Equation (2.55), Equation (2.56), Equation (2.58), and Equation (2.59),

$$
\begin{equation*}
\frac{v_{12}}{E_{1}}=\frac{v_{21}}{E_{2}} . \tag{2.67}
\end{equation*}
$$

Similarly, from Equation (2.55), Equation (2.57), Equation (2.61), and Equation (2.62),

$$
\begin{equation*}
\frac{V_{13}}{E_{1}}=\frac{v_{31}}{E_{3}} \tag{2.68}
\end{equation*}
$$

and from Equation (2.58), Equation (2.60), Equation (2.61), and Equation (2.63),

$$
\begin{equation*}
\frac{v_{23}}{E_{2}}=\frac{v_{32}}{E_{3}} \tag{2.69}
\end{equation*}
$$

Equation (2.67), Equation (2.68), and Equation (2.69) are called reciprocal Poisson's ratio equations. These relations reduce the total independent engineering constants to nine. This is the same number as the number of independent constants in the stiffness or the compliance matrix.

Rewriting the compliance matrix in terms of the engineering constants gives

$$
[S]=\left[\begin{array}{rrrrrr}
\frac{1}{E_{1}} & -\frac{v_{12}}{E_{1}} & -\frac{v_{13}}{E_{1}} & 0 & 0 & 0 \tag{2.70}\\
-\frac{v_{21}}{E_{2}} & \frac{1}{E_{2}} & -\frac{v_{23}}{E_{2}} & 0 & 0 & 0 \\
-\frac{v_{31}}{E_{3}} & -\frac{v_{32}}{E_{3}} & \frac{1}{E_{3}} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{G_{23}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{G_{31}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{G_{12}}
\end{array}\right] .
$$

Inversion of Equation (2.70) would be the compliance matrix $[C]$ and is given by

$$
[C]=\left[\begin{array}{cccccc}
\frac{1-v_{23} v_{32}}{E_{2} E_{3} \Delta} & \frac{v_{21}+v_{23} v_{31}}{E_{2} E_{3} \Delta} & \frac{v_{31}+v_{21} v_{32}}{E_{2} E_{3} \Delta} & 0 & 0 & 0 \tag{2.71}\\
\frac{v_{21}+v_{23} v_{31}}{E_{2} E_{3} \Delta} & \frac{1-v_{13} v_{31}}{E_{1} E_{3} \Delta} & \frac{v_{32}+v_{12} v_{31}}{E_{1} E_{3} \Delta} & 0 & 0 & 0 \\
\frac{v_{31}+v_{21} v_{32}}{E_{2} E_{3} \Delta} & \frac{v_{32}+v_{12} v_{31}}{E_{1} E_{3} \Delta} & \frac{1-v_{12} v_{21}}{E_{1} E_{2} \Delta} & 0 & 0 & 0 \\
0 & 0 & 0 & G_{23} & 0 & 0 \\
0 & 0 & 0 & 0 & G_{31} & 0 \\
0 & 0 & 0 & 0 & 0 & G_{12}
\end{array}\right],(
$$

where

$$
\begin{equation*}
\Delta=\left(1-v_{12} v_{21}-v_{23} v_{32}-v_{13} v_{31}-2 v_{21} v_{32} v_{13}\right) /\left(E_{1} E_{2} E_{3}\right) \tag{2.72}
\end{equation*}
$$

Although nine independent elastic constants are in the compliance matrix [S] and, correspondingly, in the stiffness matrix [C] for orthotropic materials, constraints on the values of these constants exist. Based on the first law of thermodynamics, the stiffness and compliance matrices must be positive definite. Thus, the diagonal terms of $[C]$ and $[S]$ in Equation (2.71) and Equation (2.70), respectively, need to be positive. From the diagonal elements of the compliance matrix [S], this gives

$$
\begin{equation*}
E_{1}>0, E_{2}>0, E_{3}>0, G_{12}>0, G_{23}>0, G_{31}>0 \tag{2.73}
\end{equation*}
$$

and, from the diagonal elements of the stiffness matrix [C], gives

$$
\begin{gather*}
1-v_{23} v_{32}>0,1-v_{31} v_{13}>0,1-v_{12} v_{21}>0 \tag{2.74}\\
\Delta=1-v_{12} v_{21}-v_{23} v_{32}-v_{31} v_{13}-2 v_{13} v_{21} v_{32}>0
\end{gather*}
$$

Using the reciprocal relations given by Equation (2.67) through Equation (2.69),

$$
\frac{v_{i j}}{E_{i}}=\frac{v_{j i}}{E_{j}} \text { for } i \neq j \text { and } i, j=1,2,3,
$$

For example, because

$$
1-v_{12} v_{21}>0
$$

then

$$
\begin{gather*}
v_{12}<\frac{1}{v_{21}}=\frac{E_{1}}{E_{2}} \frac{1}{v_{12}} \\
\left|v_{12}\right|<\left|\frac{E_{1}}{E_{2}} \frac{1}{v_{12}}\right| \\
\left|v_{12}\right|<\sqrt{\frac{E_{1}}{E_{2}}} \tag{2.75a}
\end{gather*}
$$

Similarly, five other such relationships can be developed to give

$$
\begin{align*}
& \left|v_{21}\right|<\sqrt{\frac{E_{2}}{E_{1}}} \tag{2.75b}\\
& \left|v_{32}\right|<\sqrt{\frac{E_{3}}{E_{2}}} \tag{2.75c}\\
& \left|v_{23}\right|<\sqrt{\frac{E_{2}}{E_{3}}} \tag{2.75d}\\
& \left|v_{31}\right|<\sqrt{\frac{E_{3}}{E_{1}}} \tag{2.75e}\\
& \left|v_{13}\right|<\sqrt{\frac{E_{1}}{E_{3}}} . \tag{2.75f}
\end{align*}
$$

These restrictions on the elastic moduli are important in optim $f^{\text {ntinc } i f f}$ a composite because they show that the nine independent

Example 2.5

Find the compliance and stiffness matrix for a graphite/epoxy lamina. The material properties are given as

$$
\begin{gathered}
E_{1}=181 \mathrm{GPa}, E_{2}=10.3 \mathrm{GPa}, E_{3}=10.3 \mathrm{GPa} \\
v_{12}=0.28, v_{23}=0.60, v_{13}=0.27 \\
G_{12}=7.17 \mathrm{GPa}, \mathrm{G}_{23}=3.0 \mathrm{GPa}, \mathrm{G}_{31}=7.00 \mathrm{GPa} .
\end{gathered}
$$

Solution

$$
\begin{gathered}
S_{11}=\frac{1}{E_{1}}=\frac{1}{181 \times 10^{9}}=5.525 \times 10^{-12} \mathrm{~Pa}^{-1} \\
S_{22}=\frac{1}{E_{2}}=\frac{1}{10.3 \times 10^{9}}=9.709 \times 10^{-11} \mathrm{~Pa}^{-1} \\
S_{33}=\frac{1}{E_{3}}=\frac{1}{10.3 \times 10^{9}}=9.709 \times 10^{-11} \mathrm{~Pa}^{-1} \\
S_{12}=-\frac{v_{12}}{E_{1}}=-\frac{0.28}{181 \times 10^{9}}=-1.547 \times 10^{-12} \mathrm{~Pa}^{-1} \\
S_{13}=-\frac{v_{13}}{E_{1}}=-\frac{0.27}{181 \times 10^{9}}=-1.492 \times 10^{-12} \mathrm{~Pa}^{-1} \\
S_{23}=-\frac{v_{23}}{E_{2}}=-\frac{0.6}{10.3 \times 10^{9}}=-5.825 \times 10^{-11} \mathrm{~Pa}^{-1} \\
S_{44}=\frac{1}{G_{23}}=\frac{1}{3 \times 10^{9}}=3.333 \times 10^{-10} \mathrm{~Pa}^{-1} \\
S_{55}=\frac{1}{G_{31}}=\frac{1}{7 \times 10^{9}}=1.429 \times 10^{-10} \mathrm{~Pa}^{-1}
\end{gathered}
$$

$$
S_{66}=\frac{1}{G_{12}}=\frac{1}{7.17 \times 10^{9}}=1.395 \times 10^{-10} \mathrm{~Pa}^{-1}
$$

Thus, the compliance matrix for the orthotropic lamina is given by

$$
\begin{gathered}
{[S]=} \\
{\left[\begin{array}{cccccc}
5.525 \times 10^{-12} & -1.547 \times 10^{-12} & -1.492 \times 10^{-12} & 0 & 0 & 0 \\
-1.547 \times 10^{-12} & 9.709 \times 10^{-11} & -5.825 \times 10^{-11} & 0 & 0 & 0 \\
-1.492 \times 10^{-12} & -5.825 \times 10^{-11} & 9.709 \times 10^{-11} & 0 & 0 & 0 \\
0 & 0 & 0 & 3.333 \times 10^{-10} & 0 & 0 \\
0 & 0 & 0 & 0 & 1.429 \times 10^{-10} & 0 \\
0 & 0 & 0 & 0 & 0 & 1.395 \times 10^{-10}
\end{array}\right] \mathrm{Pa}^{-1}}
\end{gathered}
$$

The stiffness matrix can be found by inverting the compliance matrix and is given by

$$
\begin{gathered}
{[C]=[S]^{-1}} \\
{[C]=} \\
{\left[\begin{array}{cccccc}
0.1850 \times 10^{12} & 0.7269 \times 10^{10} & 0.7204 \times 10^{10} & 0 & 0 & 0 \\
0.7269 \times 10^{10} & 0.1638 \times 10^{11} & 0.9938 \times 10^{10} & 0 & 0 & 0 \\
0.7204 \times 10^{10} & 0.9938 \times 10^{10} & 0.1637 \times 10^{11} & 0 & 0 & 0 \\
0 & 0 & 0 & 0.3000 \times 10^{10} & 0 & 0 \\
0 & 0 & 0 & 0 & 0.6998 \times 10^{10} & 0 \\
0 & 0 & 0 & 0 & 0 & 0.7168 \times 10^{10}
\end{array}\right] P a}
\end{gathered}
$$

The preceding stiffness matrix $[C]$ can also be found directly by using Equaion (2.71).

2.4 Hooke's Law for a Two-Dimensional Unidirectional Lamina

2.4.1 Plane Stress Assumption

A thin plate is a prismatic member having a small thickness, and it is the case for a typical lamina. If a plate is thin and there are no out-of-plane loads, it can be considered to be under plane stress (Figure 2.17). If the lower surfaces of the plate are free from external loads, then σ_{3} $=0$. Because the plate is thin, these three stresses within tl

FIGURE 2.17
Plane stress conditions for a thin plate.
assumed to vary little from the magnitude of stresses at the top and the bottom surfaces. Thus, they can be assumed to be zero within the plate also. A lamina is thin and, if no out-of-plane loads are applied, one can assume that it is under plane stress. This assumption then reduces the three-dimensional stress-strain equations to two-dimensional stress-strain equations.

2.4.2 Reduction of Hooke's Law in Three Dimensions to Two Dimensions

A unidirectional lamina falls under the orthotropic material category. If the lamina is thin and does not carry any out-of-plane loads, one can assume plane stress conditions for the lamina. Therefore, taking Equation (2.26) and Equation (2.39) and assuming $\sigma_{3}=0, \tau_{23}=0$, and $\tau_{33}=0$, then

$$
\begin{gather*}
\varepsilon_{3}=S_{13} \sigma_{1}+S_{23} \sigma_{2} \\
\gamma_{23}=\gamma_{31}=0 \tag{2.76a,b}
\end{gather*}
$$

The normal strain, ε_{3}, is not an independent strain because it is a function of the other two normal strains, ε_{1} and ε_{2}. Therefore, the normal strain, ε_{3}, can be omitted from the stress-strain relationship (2.39). Also, the shearing strains, γ_{23} and γ_{31}, can be omitted because they are zero. Equation (2.39) for an orthotropic plane stress problem can then be written as

$$
\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12}
\end{array}\right]=\left[\begin{array}{ccc}
S_{11} & S_{12} & 0 \\
S_{12} & S_{22} & 0 \\
0 & 0 & S_{66}
\end{array}\right]\left[\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\tau_{12}
\end{array}\right],
$$

Dr. T. JAYACHANDRA PRASAD
ME.Ph.D.FIEFETE MNAFEN,MSTE,MEEE
PRINCIPAL
where $S_{i j}$ are the elements of the compliance matrix. Note the four independent compliance elements in the matrix.

Inverting Equation (2.77) gives the stress--strain relationship as

$$
\left[\begin{array}{c}
\sigma_{1} \tag{2.78}\\
\sigma_{2} \\
\tau_{12}
\end{array}\right]=\left[\begin{array}{ccc}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12}
\end{array}\right],
$$

where $Q_{i j}$ are the reduced stiffness coefficients, which are related to the compliance coefficients as

$$
\begin{gather*}
Q_{11}=\frac{S_{22}}{S_{11} S_{22}-S_{12}^{2}} \\
Q_{12}=-\frac{S_{12}}{S_{11} S_{22}-S_{12}^{2}}, \tag{2.79a-d}\\
Q_{22}=\frac{S_{11}}{S_{11} S_{22}-S_{12}^{2}}, \\
Q_{66}=\frac{1}{S_{66}}
\end{gather*}
$$

Note that the elements of the reduced stiffness matrix, $Q_{i j}$, are not the same as the elements of the stiffness matrix, $C_{i j}$ (see Exercise 2.13).

2.4.3 Relationship of Compliance and Stiffness Matrix to Engineering Elastic Constants of a Lamina

Equation (2.77) and Equation (2.78) show the relationship of stress and strain through the compliance [S] and reduced stiffness [Q] matrices. However, stress and strains are generally related through engineering elastic constants. For a unidirectional lamina, these engineering elastics constants are
$E_{1}=$ longitudinal Young's modulus (in direction 1)
$E_{2}=$ transverse Young's modulus (in direction 2)
$v_{12}=$ major Poisson's ratio, where the general Poisson's ratio, $v_{i j}$ is defined as the ratio of the negative of the normal strain in direction j to the normal strain in direction i, when the only normal load is applied in direction i

[^5]
Rajeev Gandhi Memorial College of Engineering \& Technology Autonomous

TV 1 NAN B. Tech. We Semester Mid-II Examinations
 MECHANICS OF COMPOSITE MATERIALS (A0326127)
 (Mechanical Engineering)
 Date: Q-3-2021 2

Max. Marks: 25
Time: 2 Hours
Note: 1 . Answer first question compulsorily. $(2 \times 5=10 \mathrm{Marks})$
2. Answer any three from 2 to 5 questions. $(5 \times 3=15 \mathrm{Marks})$
Q. 1 a What is angle ply lamina and state ins significance?
b Define the void faction in two dilierent ways?
2M Col
c State the Hooke's law for 20 element in terms of compliance matrix?
$2 \mathrm{M} \quad \mathrm{Co} 2$
d State the Betti reciprocal law and state its significance?
$2 \mathrm{M} \quad \mathrm{Co} 3$
e State the different failures of theories?
2M Col
$2 \mathrm{M} \quad \mathrm{Co} 2$
Q. 2 a Derive an expression for in-plane shear modulus in micro-mechanics of
b Demposites using strength of materials approach? of unidirectional lamina with strength of materials approach?
Q. 3 a State the different theories of failures and explain?
b A 45° angle lamina loaded under biaxial normal loading as $\sigma_{x}=-2 \sigma_{y}=2 \sigma_{0}$ find σ_{0}, Basic strength properties of material are $\left(\sigma_{1}\right)_{t}^{u}=\left(\sigma_{1}\right)_{c}^{u}=3\left(\sigma_{2}\right)_{c}^{u}=5\left(\tau_{12}\right)^{u}=12\left(\sigma_{2}\right)_{c}^{u}=600 \mathrm{MPa}$, check the inequalities
using maximum stress theory? using maximum stress theory?
Q. 4 a Find the engineering constants for 30 degrees angle lamina, Use the following properties, $\mathrm{E}_{1}=204 \mathrm{GPa}, \mathrm{E}=18.5 \mathrm{GPa}, \mathrm{v}_{12}=0.23, \mathrm{G}_{12}=5.59 \mathrm{GPa}$ using maximum stress theory?

W Write the number of independent elastic constants for anisotropic,
isotropic, manversely isotropic orthotropic isotropic, transversely isotropic, orthotropic materials?
Q. 5 Determine the $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{G}_{12}, \mathrm{~V}_{12}$ of carbon epoxy unidirectional lamina with the following properties? $\mathrm{E}_{\mathrm{f}}=14.8 \mathrm{GPa}, \mathrm{E}_{\mathrm{m}}=3.45 \mathrm{GPa}, \mathrm{V}_{\mathrm{m}}=0.35, \mathrm{v}_{1}=0.2$, and $\mathrm{v}_{\mathrm{m}}=0.5$ by strength of materials approach?

[^6]College Code: 09
Rajeev Gandhi Memorial College of Engineering \& Technology (Autonomous)
NANDYAL-518501
IV B. Tech. I-Semester I-Mid Examinations
MECHANICS OF COMPOSITE MATERIALS (A0338158)
(Mechanical Engineering)
Max. Marks: 25
Date:29/12/2020
Time: 2

Hours

Note: 1. Answer first question compulsorily. ($2 \times 5=10 \mathrm{Marks}$)
2. Answer any three from 2 to 5 questions. $(5 \times 3=15$ Marks $)$

Q. ${ }^{\text {a }}$	a	Define composites?	2M	CO 1
	b	State why boron fiber itself as a composites?	2M	C01
	c	State the three disadvantages of hand layup process?	2M	CO1
	d	State the applications of pultrusion process?	2M	COi
	e	State the advantages of PMCs?	2M	CO1
			'	
Q. 2	a	State the lypes of composites? Explain any one composite?	3M	CO 2
	b	State the different types of thermosets and explain any one?	2M	CO1
Q. 3	a	Explain briefly about carbon fiber and kevlar fibers?	2M	CO1
	b	State the difierent types of glass fibers?	3 N	CO 2
$Q .4$	a	Describe with neat sketches about spray layup technique?	2M	CO1
	b	Describe with neat sketches about resin transfer moulding teonmigue?	$3 M$	CO 2
Q. 5	a	Write short notes on ceramic matrix composite?	3 品	CO 2
	b	Write short notes on particulate composites?	2 N	03

[^7]
Autonomous

TW 4 B. Tech. Th-Semester Mid-II Examinations MECHANICS OF COMPOSITE MATERIALS(A0326127)
 (Mechanical Engineering)
 Date: ${ }^{2}$-3-2021

Max. Marks: 25
Note: 1.Answer first question compulsorily. $(2 \times 5=10 \mathrm{Marks})$
2. Answer any three from 2 to 5 questions. $(5 \times 3=15$ Marks)
Q. 1 a What is angle ply lamina and state its significance?
b Deline the void fraction in two different ways?
c State the Hooke's law for 2 D element in tems of compliance matrix"?
d State the Bett reciprocal law and state its significance?
e State the differen failures of theories?
Q. 2 a Derive an expression for in-plane shear modulus in micro-mechanics of b composites using strength of materials approach?
b Derive an expression for longitudinal modulus unidirectional composites of unidirectional lamina with strength of materials approach?
Q. 3 a State the different heories of failures and explain?
b A 45° angle lamina loaded under biaxal normal loading as $\sigma_{x}--2 \sigma_{y}=2 \sigma_{0}$ find σ_{0}, Basic strength properties of material are $\left(\sigma_{1}\right)_{t}^{u}=\left\{\sigma_{1}\right)_{c}^{u}=3\left(\sigma_{2}\right)_{c}^{u}=5\left(\tau_{12}\right)^{u}=12\left(\sigma_{2}\right)_{c}^{u}=600 \mathrm{MPa}$, check the inequalities using maximum stress theory?
Q. 4 a Find the engineering constants for 30 degrees angle lamina, Use the following properties, $\mathrm{E}_{1}=204 \mathrm{GPa}, \mathrm{E}_{2}=18.5 \mathrm{GPa}, v_{12}=0.23, \mathrm{G}_{12}=5.59 \mathrm{GPa}$
b Write the number of independent elastic constants for anisotropic, isotropic, transversely isotropic, orthotropic materials?
Q. 5

Determine the $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{G}_{12}, \mathrm{~V}_{12}$ of carbon epoxy unidirectional lamina with the following properties? $E_{4}=14.8 \mathrm{GPa}, \mathrm{E}_{\mathrm{m}}=3.45 \mathrm{GPa}, \mathrm{V}_{\mathrm{m}}=0.35, \mathrm{v}_{1}=0.2$,

[^8]
RAUEEV GANDHI MEMORIAL COLLEGE OF ENGINEERING \& TECHNOLOGY

 AUTONOMOUSAccredited by NAAC of UGC, New Delhi with 'A' Grade:: Accredited by NBA Affiliated to JNT University Anantapur, Anantapuramu

Nandyal - 518501 , Kurnool Dist, A.P.
INTERNAL EXAMINATIONS ANSWER BOOKLET

NAME OF THE STUDENT: $C \cdot G U R U$ PAVAN \qquad Reg. No.

1	8	0	9	5	A	0	3	0	8

 INTERNAL EXAM : I II

Date of Exam: 29-12-2020 (FN/AN) Course: B. Tech. / M. Tech./ MBA / MCA

Branch: MECHANICAL
\qquad

Signature of the Invigilator:

$$
\text { Year }: \underline{I V} \text { sem: T }
$$

(Start Writing From Here)
(2) 1 * Composites:

Composites are defined as the combination of two materials which cannot dissolve and con distinguish each other. Composite materials possess goad strength and stiffness Composite materials are highly used in aircraft manufacturing Process.
Q. 1 Boron fiber itself is a composite because in the b) metal matrix form of heron includes the material which are in internally occupied in the range of nan micron and it possess the great structural properties 'without any aid of external fiber. So, that's the reason boron fiber itself called
Q) 1 * Advantages of frond hay up Process:
c)

1. It is very economical process and less cost is required for this process.
2. The resin is uniformly distributed over entire fiber.
3.: The hand lay up process is easy to operate.
3. By hand lay up process we can produce any Structural requirements.
Q. 1
d.)
4. Textile industries
5. Aerospace industries
3.... Used in industries where Surface finish of the materials are major consideration.
6. Used in production of fabrications
7. Used highly for any type of materials and are uniformly produce the fabrics.
Q.) : Advantage of PMC'S
e.)

PMC - Polymer Matrix Composites

1. This PMC's posses good strength and good Stiffness to winnewtand loads.
2. This composites have better structural properties.
3. The weight to density ratio of pol composites are less.
Q. 4
a.)

* SPRAY LAY UP PROCESS:

In spray hay up process the chopped fiber and resin is mixed in a pool. Here the impregnation of resin and chopped fiber is done by spraying the both at required proportion is to be happen. The sprayer will get the mixture from the pool as mentioned above. Here the resin and chopped fiber get stacked on the mould and after sometime the resin mixture get dried due to atmospheric conditions.

* Advantages:

1. It is more cconomical process:-
2. Time required to perform the process is very ks s.
3. By this process only small and medium volume parts can be done.
*. DisadVantages:
4. By this process surface finish is poor.
and other side poor surface finish.
5. Large Structural requirement parts can nat be done by this process.
6. Cost of this process is high.
7. This process requires skilled labour to spray the mixture in required proportions.

* Applications.

1. Doors of Gars
2. Chemical preserving tankers
3. Pipe lines
4. Autuomobile parts manufacturing.

Qu $*$ Resin Transfer Molding Technique:
b.) \qquad

In resin transfer moulding technique...
will fit exactly to the mould walls and so that we can derive accurate parts..... In..... this resin transfer moulding technique firstly the dry fiber is placed in the mould and then the vacuum resin intensity is passed tran g the mould This process of tronsterng resin into the mould is called resin transfer moulding tech cinque.

* Advantages.

1. Simple in process.
2. More economical process.
3. Good surface finish will be obtained.
4. Large structural components can be produced by this process.
5. No requirement of shilled labour

* Disadvantages.

1. Vacuum pressure sending into the mould is to be uniform entire the process.
2. Mould will tends to vibrations.
3.: Operated under specific pressure of Vacuum.

* Applications:

1. Used in Aerospace industries
2. Used to produce superfish products.
3. Used in rail transport industries.
4. Used to produce mechanical component
(2) 2 * Types of composites:
a.)
5. Polymer matrix composites
6. Metal Matrix composites
7. Ceramic Matrix Composites
8. Carbon Carbon Composites.

* Polymer Matrix Composites:

Polymer matrix composites formed by the process of involving the polymer materials so as to get the desirable properties The materials involved in the polymer matrix composites are polymers of Poly vinyl and finolex majorly
Since, these materials have great structural properties they are widely in the use of aerospace industries in the manufacturing process. ms of aircraft.
These composites possess good ability to withstand lads..... so as to maintain safe production.
This polymer matrix composite are very hess density components but they hove their own in built properties to accommodate the component These have the great bonding capability between the materials and can withstand with we................. type of material.
since, these are highly useful compositions the se will have applications in many indus
Q. 2 * Types of Thermoses
b)

1. Vinylaptholene
ethane

2. Polyfingl axolene
3. Polyvinyl acetylene.

Thermosets are those, once they can set into one mould it is difficult to deform the component either by aid of both pressure and temperature

* Polyvinyl acetylene:

This thermoses form have its own. characteristics in the composites field. This thermoses have grater ability to set the component to any structural requirement Since, the se have the high usage in olden times too these themosets have wide' range of applications in both industrial and manufacturing fields and also in the manufacturing of the aircraft parts. Due to their weight to density ratio these thermosets has good applications in any field.
These themosets are possess good strength and stiffens to the components:- 50 as that it can withstand heavy loads while operating:

* Advantages.

1. Highly used in aerospace industries.
2. Possess good strength and stiffness.
3. These can withstand heavy loads.
4. Possess good structural properties
(2). 3 T Types of Glass fibers.
b)
5. G Glass fibers
6. E - Glass fibers
3........ Glass fibers
7. B.... Glass fibers
5.: D - Glass fiber
8. Ceramic Glass fibers.

The glass fibers above mentioned are the most. commonly used fibers in the composite field.
Due to glass properties these fibers are coidely in the use of many industries and also in manufacturing to os.
These fibers are less in weight to density ratio so as to attain its applications in the aerospace field too.
(2) 3 * Carbon Fiber:
a)

Carbon fibers are most usuage fiber in the aerospace field. Due to the ar own Characteristics and properties carbon fiber has great applications in many of the industries. These carbon fibers poses good strength and Stifles to the component.
While it comes to density and weight ratio it is very less. The weight of the
ZunI bees are very less, So these fibers...... Dr. T. JAMACHANDRAPRASAD MEPM.D.FIEFFIETENAFEN, MSTEMIEEE
PRINCIPAL

* Kelvar fiber:

Kelter fibers are the desirable fibres in. both industrial and manufacturing fields due to their internally possessed properties. This kelvar fiber has. its own derived characteristics due to that this fiber has their own applications in the aerospace industries. Kelvar fiber posses good strength and stiffness to the component inorder to sustain the high Carrying loads on the component. so as that kelvar fiber is the highly recomondable fibre due to its self possessed desirable properties.
Q. 5 * Ceramic Matrix Composites:
a)

Ceramic matrix composites are derived from the glass fibers. The different glass fibers will possess different yield properties so as that ceramic matrix composites are derived by the both S \& E type glass fibers. ceramic matrix compositics have wide range of applications due to its temparature resistive properties.: These composites will possess good reliable strength to components.
But tue to less stiffness it has also limitation to break easily so that it cannot withstand the high Carrying sudden loads.
As apart from low stiffness it has all desirable properties for the development of the matrix composites in both industrial and aerospace fields.

* Advantages:

1. Possess high reliable strength
Q. Used as the finished: look component:
2. These have good temperature calibrating Properties.
3. Highly used in the Ceramic Components
Q. 5 * Particulate Composites:
b)

Particulate composites are derived from the fine particles of two different materials. This particulate composites poses good strength and 6tiffers because of deriving under the process of course grains to f the bight desirable property material to desirable component.
This type of components are highly used in the manufacturing of machine engines...... machines, and space rocket engines. Due to the properties of this particulate ceramics these have applications in many other. fields too. This particulate composites possess good strength and stiffens to the components that are derived.

RALEEV GANDHI MEMORIAL COLLEGE OF ENGINEERING \& TECHNOLOGY AUTONOMOUS
Accredited by NAAC of UGC, New Delhi with 'A' Grade:: Accredited by NBA
Affiliated to JNT University Anantapur, Anantapuramu Nandyal - 518501 , Kurnool Dist, A.P.
INTERNAL EXAMINATIONS ANSWER BOOKLET

NAME OF THE STUDENT: C-GURU PAVAN

Reg. No.

NAME OF THE SUBJECT: M.C.M:
INTERNAL EXAM: III
Date of Exam: $29-12-2020$ (FN/AN)
Course : B. Tech. / M. Tech./ MBA / MCA
Year : IV Sem.: I
Branch: MECHANICAL

(Start Writing From Here)
Q. 1 * Composites.
a) Composites are defined as the combination of two materials which cannot dissolve and con distinguish each other. Composite materials possess good strength and stiffness. composite materials are highly used in aircraft manufacturing Process.
Q. 1 Boron fiber itself is a composite because in the metal matrix form of boron includes the material which are in internally occupied in the range of nance micron and it possess the great structural properties without any aid of external fiber. So that's the reason boron fiber itself called a com

Qa l A Advantages of /hand hay up Process:
c)

1. It is very economical process and less cost is required for this process.
2. The resin is uniformly distributed over entin fiber.
3. The hand lay up process is easy to operate.
4. By hand lay up process we can produce any structural requirements.
Q. 1 * Applications of Putrusion process
d)
5. Textile industries
6. Aerospace industries
7. Used in industries where surface finish of the materials are major consideration
8. Used in production of fabrications.
9. Used highly for any type of materials and are uniformly produce the fabrics.
Q. 1 Advantage of PMC'S
e.)

PMC - Polymer Matrix Composites

1. This PNC's posses good strength and good Stiffness to withstand loads.
2. This composites have better structural propertig
3. The weight to density ratio of polymer Matrix Composites are less.
4. They are highly using composites
\qquad
(2)
a)
and other side poor surface finish.
5. Large structural requirement parts cannot be done by this process.
6. Cost of this process is high.
7. This process requires skilled labour to spray the mixture in required proportions.

* Applications:

1. Doors of Gars
2. Chemical preserving tankers
3. Pipe lines
4. Autuomobile parts manufacturing.

Qu. \rightarrow Resin Transfer Moulding Tepthique:
b.)
\qquad
\qquad
\qquad
In resin transfer moulding technique the fiber and resin passed through a mould
will fit exactly to the mould walls and 50 that we con derive accurate parts. In this resin transfer moulding technique firstly the dry fiber is placed in the mould and then the vacuum resin intensity is passed through the mould This process of transferring resin into the mould is called resin transfer moulding technique.

* Advantages:

1. Simple in process.
2. More economical process.
3. Good surface finish will be obtained
4. Large structural components can be produced by this process.
5. No requirement of skilled labour.

* Disadvantages:

1. Vacuum pressure sending into the mould is to be uniform entire the process.
2. Mould will tends to vibrations.
3. Operated under specific pressure of vacuum.

* Applications:

1. Used in Aerospace industries
2. Used to produce superfish products.
3. Used in rail transport industries.
4. Used to produce mechanical. components.
(0) 2 * Types of composites:
a)
5. Polymer matrix composites
6. Metal Matrix Composites
7. Ceramic Matrix composites
8. Carbon Carbon Composites.

* Polymer Matrix Composites:

Polymer matrix composites formed by the process of involving the polymer materials so as to get the desirable properties. The materials involved in the polymer matrix composites are polymers of Polyvinyl and finolex majorly.
Since, these materials have great structural properties they are widely in the use of aerospace industry in the manufacturing process of aircraft.
These composites possess good ability to withstand lads. so as to maintain safe production.
This polymer matrix composite are very less density components but they have their own in built properties to accommodate the component. These have the great bonding capability between the materials and can withstand with any type of material.
Since, these are highly useful composities these will have applications in many industrial and manufacturing fields.
Q) * Types of Thermosets
b)

1. Vinylaptholene
ethane \qquad
2. Polyfingl axolene
3. Polyvinyl acetylene.

Thermoses are those, once they can set into one mould it is difficult to deform the component cither by aid of bath pressure and temparature

* Polyvinyl acetylene.

This thermoset form have its own characteristics in the composites field. This thermoses have grater ability to set the component to any structural requirement Since, the se have the high usage in olden times too these thermosets have wide range of applications in both industrial and manufacturing fields and also in the manufacturing of the aircraft parts. Due to their wring to density ratio the e Thermosets has good applications in any field.
These themosets are possess god strength and stiffens to the components. 50 as that it can withstand heavy loads while operating.

* Advantages.

1. Highly used in aerospace industries.
2. Possess good strength and stiffer es.
3. These can withstand heavy loads.
4. Possess good structural properties

ONO.
\qquad
Q. 3 * Types of Glass fibers:
b)

1. G -Glass fibers
2. E - Gloss fibers
3. C Gloss fibers
4. B - Glass fibers
5. D - Glass fibers
6. Ceramic Glass fibers.

The glass fibers above mentioned are the most. Commonly used fibers in the composite field. Due to glass properties these fibers are width in the use of many industries and also in manufacturing too.
These fibers are less in weight to density ratio so as to attain its applications in the aerospace field too.
\qquad
Qu. $*$ Carbon Fiber:
Q)

Carbon fibers are most usuage fiber in the aerospace field. Due to their non characteristics and properties carbon fiber has great applications in many of the industries The sc carbon fibers posses good strength and Stifles to the component.
While it comes to density and weight ratio it is very less. The weight of the carbon fibers are very less, so these:

* Kelvar fiber:

Kelvar fibers are the desirable fibers in both industrial and manufacturing fields due to their... internally possessed properties. This kelvan fiber has. its own derived characteristics, due to that this fiber has their own applications in the aerospace industries. Kelvar fiber poses good. Strength and stiffens to the component inorder to sustain the high carrying loads on the component. so as that kelvar fiber is the highly recomponable fibre due to its get possessed desirable properties.

Qu. 5 * Ceramic Matrix composites:
a)

Ceramic matrix composites are derived from the glass fibers. The different glass fibers will possess different yid properties so as that ceramic matrix composites are derived by the both 5 \& f type glass fibers. Ceramic matrix composities have wide range of applications due to ito temparature resistive properties. These composites will possess good reliable strength to components.
But duce to less stiffness it has also limitation to break easily so that it cannot withstand the high Carrying sudden loads.
As apart from low stiffest it has all desirable properties for the development of the matrix composites in both industrial and aerospace fields.
ONO. \qquad Dr. T. JAYACHANDRA PRASAD MEPM.D.FIEFETENMAFEN, MSTEMIEEE
PRINCIPAL PRINCIPAL (Autonomous)
NANDYAL-S18501, Kurnool (DI), A.P.

* Advantages:

1. Possess high reliable strength
2.. Used as the finished look component.
2. These have good temparature calibrating Properties.
3. Highly used in the ceramic components
Q. 5 * Particulate Composites:
b)

Particulate composites are derived from the fine particles of two different materials. This particulate composites posses good strength and Stiffness because of deriving under the process of course grains oof the high desirable property material to desirable component.
This type of components are highly used in the manufacturing of machine engines, machinery, and space rocket engines. Due to the properties of this particulate ceramics these have applications in many other: fields too. This particulate composites possess good strength and stiffness to the components that are derived.

RAJEEV GANDHI MEMORIAL COLLEGE OF ENGINEERING \& TECHNOLOGY AUTONOMOUS
Accredited by NAAC of UGC, New Delhi with 'A' Grade: Accredited by NBA Affiliated to JNT University Anantapur, Anantapuramu Nandyal - 518 501, Kurnool Dist, A.P.
INTERNAL EXAMINATIONS ANSWER BOOKLET

NADEEEYESHDENT:T.Sai Dhecray Reg. No. | 1 | 7 | 0 | 9 | 1 | A | 0 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

	1	2	3	4	5
A			\checkmark	γ	3
B	γ			γ	
C	d				
D	γ				
E	γ				
Total	γ		Ω	4	3
Grand Total :(In Figures)					G

NAME OF THE SUBJECT: MCM INTERNAL EXAM: I / II
Date of Exam: $07 / 03 / 2021$. (FN/AN)
Course: B. Tech. / M. Tech./ MBA / MCA Year: \qquad IV Sem: I

Branch: MECHANICAL ENGG.
A Ablishek
(Start Writing From Here)
Q)
(a) Angle ply laminar- The angle by whish the fibres are oriented in the direction cos th the en matrix.

The significance of angle ply lamina is of
 matrix to bind stronger. Therefore this is the... significance of angle ply lamina..
Q)
 The solo of volume of void to on...... 1
Ow) netrix. Therefore This is celled Dr K. THIRUPATHI REDDY

$$
V_{f}=\frac{V_{V}}{1 / n n}
$$

Dr. T. JAMACHAND RA PRASAD
Q.) (C) Hooks law for 2 D element can

Ge defined by too coays
i) Compliance matris.
iu) Atifness matrin
Reduced Reuerse Compliance matrix.:-

$$
)^{\sigma_{1}} \sigma_{j}=\left[\begin{array}{ccc}
Q_{x x} & \theta_{x y} & \theta_{x s} \\
Q_{y x} & Q_{y y} & Q_{y s} \\
Q_{s x} & Q_{s y} & Q_{s s}
\end{array}\right]\left\{\varepsilon_{2}\right.
$$

Then fore this is the thakeslaw for 20 elament in tem of complinnce matrix

Q1)

 best standaedo in theoreticel spapractivel aspert at opproxime then thes is the
Betti-. Recipmcal bua and its significance.

Q1) (e) There an diffenent failunes of theories
i) Maximum priocipal etrain theor.
ii) T sain trius freang
iii) Ts.

Q4) $(2 x=$ Gren $d s t$
angle bot lamina $\quad 2 x=30^{\circ}$

$$
\begin{aligned}
& E_{1}=204 G \mathrm{GC}=204 \times 10^{9} \mathrm{MP} \\
& t_{2}=18.5 \mathrm{GP}=18.5 \times 10^{9} \mathrm{MP} \\
& U_{12}=0.23
\end{aligned}
$$

$$
\text { (T) }: 5.59 G P=5.59 \times 10^{9} \mathrm{MPC}
$$

Q4) (b) The number of independent elatio constants for
Q anisotropic matarial $=1$
For isotropic moterial - 2
For transversely isotropic $=3$
For orthotropic matorial $=9$

Q5) Given dote

$$
\begin{aligned}
E_{f} & =14.8 G P a \\
E_{m} & =3.45 G P \\
V_{m} & =0.35 \\
V_{f} & =0.2 \\
\theta_{m} & V_{m}=0.5
\end{aligned}
$$

wse haue to detarmine

$$
\begin{aligned}
& E_{1}=2 \\
& E_{2}=9 \\
& C_{12}=9 \\
& V_{12}=?
\end{aligned}
$$

Giuen matarial \rightarrow carbon epaxy unidencution al lamina......

$$
\begin{aligned}
& E_{1}=\frac{E_{f}}{E_{m}}=\frac{14.8}{3.45}=3.8 \\
& E_{2}=\frac{E_{m}}{E_{f}}=\frac{3.45}{14.8}=0.33 . \\
& G_{12}=\frac{E_{1}}{E_{2}}=\frac{3.80}{0.33}=9.6 \\
& V_{12}=\frac{V_{f}}{V_{m}}=\frac{0.2}{0.5}=\frac{2}{5}=0.4
\end{aligned}
$$

Q3) (a) Then ane different thenies...... of failunes
i) Maximum principal strain. - theory....
ii) Psai -Hill theary
iii) Thoi - theory

Q3) (b) Given data
angle of lamine $=45^{\circ}$

$$
\begin{aligned}
& V_{x}=-2 V_{y}=2 \sigma_{0} \\
& \left(\sigma_{1}\right)_{t}^{u}=600 \mathrm{MP} \\
& \left(\sigma_{1}\right)^{4}=600 \mathrm{MP} \\
& \left(\sigma_{2}\right)^{4}=200 \mathrm{MP} \\
& 5\left(Z_{1}\right)^{u}=600 \\
& \left(T_{1}\right)^{4}=120 \mathrm{MP} \\
& \left(r_{2}\right)^{4}=\frac{600}{120} 2
\end{aligned}
$$

Nb theores

$$
\begin{aligned}
& -600<\sigma_{12}<600 \\
& -120<\sigma_{1}<50 \\
& -50<\sigma_{2}<200
\end{aligned}
$$

IV B. Tech. I-Semester I-Mid Examinations MECHANICS OF COMPOSITE MATERIALS (A0338158)
(Mechanical Engineering)
Max. Marks: 25
Date:24-08-2019
Time: 2 Hours
Note: 1.Answer first question compulsorily. ($2 \times 5=10 \mathrm{Marks}$)
2. Answer any theree from 2 to 5 questions. $(5 \times 3=15$ Marks)
Q. 1 a Define composite and state its significance?
b State the functions of matrix? $\quad 2 \mathrm{M}$
c State the three fiber products and two characteristics of each? $\quad \mathbf{2 M}$
d State the mechanical properties of carbon fiber? 2 ZM
e State the principle of pultrusion? $\quad \mathbf{2 M}$
Q. 2 a State the applications of composites in field wise? 3 M
b State the different types of thermo-sets polymers and explain any one
polymer?
Q. 3 a Explain briefly about boron fiber and kevlar fibers? \quad 2M
b State and explain the different types of glass fibers? ${ }^{\circ}$ 3M
Q. 4 a Describe with neat sketches about hand lay-up technique? 2M
b Describe with neat sketches about resin transfer moulding technique? 3M
Q. 5 a Write short notes on carbon-carbon matrix composite? 3 M
$\begin{array}{ll}\text { b Write short notes on particulate composites? } & \mathbf{2 M} \\ \mathbf{2 M}\end{array}$

[^9]IV B. Tech. I-Semester I-Mid Examinations
MECHANICS OF COMPOSITE MATERIALS (A0338158) (Mechanical Engineering)
Max. Marks: 25
Q. 1 a Define composite and state its significance?2M
b State the functions of matrix? 2M
c State the three fiber products and two characteristics of each? 2M
d State the mechanical properties of carbon fiber? 2M
e State the principle of pultrusion? 2 M
Q. 2 a State the applications of composites in field wise? 3M
b State the different types of thermo-sets polymers and explain any one polymer? 2M
Q. 3 a Explain briefly about boron fiber and kevlar fibers? 2 M
b State and explain the different types of glass fibers? 3M
Q. 4 a Describe with neat sketches about hand lay-up technique? 2M
b Describe with neat sketches about resin transfer moulding technique? 3M
Q. 5 a Write short notes on carbon-carbon matrix composite? 3M
b Write short notes on particulate composites? 2M 2M

[^10]d State the mechanical properties of carbon fiber? 2 M
e State the principle of pultrusion? 2M
Q. 2 a State the applications of composites in field wise? 3 M
b State the different types of thermo-sets polymers and explain any one polymer? 2M
Q. 3 a Explain briefly about boron fiber and kevlar fibers? 2M
b State and explain the different types of glass tibers? 3M
Q. 4 a Describe with neat sketches about hand lay-up technique? 2M
b Describe with neat sketches about resin transfer moulding technique? 3M
Q. 5 a Write short notes on carbon-carbon matrix composite? 3 M
b Write short notes on particulate composites? 2M

[^11]
Rajeev Gandhi Memorial College of Engineering \& Technology
 (Autonomous)
 NANDYAL-518501
 IV B. Tech. I-Semester I-Mid Examinations
 MECHANICS OF COMPOSITE MATERIALS (A0338158)
 (Mechanical Engincering)

Max. Marks: 25 Date:24-08-2019Time: 2 Hours
Note: 1.Answer first question compulsorily. $(2 \times 5=10 \mathrm{Marks})$
2. Answer any three from 2 to 5 questions. $(5 \times 3=15$ Marks)
Q. 1 a Define composite and state its significance? 2M
b State the functions of matrix? 2M
c State the three fiber products and two characteristics of each? 2M
d State the mechanical properties of carbon fiber? 2M
e State the principle of pultrusion? 2M
Q. 2 a State the applications of composites in field wise? 3M
b State the different types of thermo-sets polymers and explain any one polymer? 2M
Q. 3 a Explain briefly about boron fiber and kevlar fibers? 2M
b State and explain the different types of glass fibers? 3M
Q. 4 a Describe with neat sketches about hand lay-up technique?
2M
2M
b Describe with neat sketches about resin transfer moulding technique? 3M
Q. 5 a Write short notes on carbon-carbon matrix composite? 3 M
b Write short notes on particulate composites? 2M

[^12]
IV 13. Tech. I-Semester I-Mid Examinations

MECHANICS OF COMPOSITE MATERIALS (A0338158)
(Mechanical Engineering)

2. Answer any three from 2 to 5 questions. $(5 \times 3=15$ Marks $)$
Q. 1 a Define composite and state its significance? 2M
b State the functions of matrix? \quad 2N
c State the three fiber products and two characteristics of each? $\quad \mathbf{2 M}$
d State the mechanical properties of carbon fiber? $\quad 2 \mathrm{M}$
e State the principle of pultrusion? $\quad \mathbf{2 M}$
Q. 2 a State the applications of composites in field wise? 3M
b State the different types of thermo-sets polymers and explain any one
polymer?
Q. 3 a Explain briefly about boron fiber and kevlar fibers? 2 M
b State and explain the different types of glass fibers? 3 M
Q. 4 a Describe with neat sketches about hand lay-up technique? $\quad 2 \mathrm{M}$
b Describe with neat sketches about resin transfer moulding technique? 3 ?
Q. 5 a Write short notes on carbon-carbon matrix composite? 3 M
$\begin{array}{ll}b & \mathbf{W r i t e} \text { short notes on particulate composites? } \\ \mathbf{2 M}\end{array}$

[^13]IV B. Tech. I-Semester I-Mid Examinations MECHANICS OF COMPOSITE MATERIALS (A0338158) (Mechanical Engineering)Max. Marks: 25Date:24-08-20192. Answer any three from 2 to 5 questions. $(5 \times 3=15$ Marks)
Q. 1 a Define composite and state its significance? 2M
b State the functions of matrix? 2M
c State the three fiber products and two characteristics of each? 2 M
d State the mechanical properties of carbon Riber? 2M
e State the principle of pultrusion? 2M
Q. 2 a State the applications of composites in field wise? 3M
b State the different types of themo-sets polymers and explain any one polymer? 2 M
Q. 3 a Explain briefly about boron fiber and kevlar fibers? 2M
b State and explain the different types of glass fibers? 3 M
Q. 4 a Describe with neat sketches about hand lay-up technique? 2 M
b Describe with neat sketches about resin transfer moulding technique? $3 M$
Q. 5 a Write short notes on carbon-carbon matrix composite? 3M
b Write short notes on particulate composites? 2M

[^14]
RaM COLLEGE OR ENGINEERING \& TECHNOLOGY (AUTONOMOUS) 22nd July -2021
 IV B. Tech I Semester (R15) End Examinations (Supplementary)
 MECHANICS OF COMPOSITE MATERIALS
 MECH

Time: 3 Hrs
Total Marks: 70

Not I:Ansmer Question No. I (Comphlsom) and A from the remaining 2: All Questions Cary Equal Marks
la Give names of various fibers used in advanced polymer composites.
b Define Orthotropic material and give the number of independent constants in macro mechanics.
c What are the assumptions made in the strength of materials approach?
d List strength failure theories of an angle lamina.
e List the factors to be considered while selecting the most efficient manufacturing process for composites.
f Give four examples of naturally found composites.
g Mention the types of glass fiber.
2 Find the four elastic moduli of a unidirectional glass/ epoxy lamina with a 70% fiber volume fraction. Use mechanics of materials approach. Take $\mathrm{E}_{\mathrm{f}}=85 \mathrm{GPa}, \mathrm{E}_{\mathrm{m}}=3.4$ $\mathrm{GPa}, \mathrm{G}_{\mathrm{r}}=35.42 \mathrm{GPa}, \mathrm{G}_{\mathrm{m}}=1.308 \mathrm{GPa} . \mathrm{v}_{\mathrm{f}}=0.25$ and $\mathrm{v}_{\mathrm{m}}=0.5$.
3 Find the strains in the $1-2$ coordiante system (Local axes) in a unidirectional boron/epoxy lamina, if the stresses in the 1-2 coordinate system applied are $\sigma_{1}=4 \mathrm{Mpa}, \sigma_{2}=2 \mathrm{Mpa}$ and $\tau_{12}=-3 \mathrm{Mpa}$. Use the following properties. $\mathrm{E}_{1}=204 \mathrm{Gpa}, \mathrm{E}_{2}=18.5 \mathrm{Gpa}, v_{12}=0.23, \mathrm{G}_{12}=5.59 \mathrm{Gpa}$.
4 a) What is pultrusion? With a neat sketch explain pultrusion technique.
b) List its advantages, disadvantages and applications.

5 a) Briefly explain ceramic matrix composites.
b) Discuss their salient features, advantages, limitations and applications.

6 a) What are the various types of reinforcement materials used in metal matrix composites?
b) Discuses how reinforcement materials selected in metal matrix composites.

7 Explain Hooke's law for
a) Anisotropic
b) Monoclinic
c) Isotropic materials.

Dr. T. JAYACHANDRA PRASAD
ME. PD. FF IE FETE MNWEEMUSTEMIEEE
PRINCIPAL

[^15]$$
220 \mathrm{~d} \text { July }-2041
$$

IV B.Teah IT Semester (Rus) End Exams (Supply)
Sub: Mechanics of Composite materials
Branch: Mechanical Enggo
scheme prepared by: Brim Ashok kumar Assoc poos
$1 a$
Fibers

Natural
Fiber
Ex! Coir fiber
sisal fiber.
Bamboo fibers
Banana fiber
Hemp fibers

Synthetic fibers
Ex:- Glaes fibers
Kevlar fibers
carbon fibers
Nylon fiber
silica fibers

- For orthotropic material properties are same at cover 90°
\# 3 Ir planes of Symmetry
\# 3 modulus of Elasticities
\# 3 shear modules
\# Totally 9 independent elastic constansts axe

1c Assumptomi made in stmenge of motericts appoact, es
(1) Matersal is homogeniong
(3) Malerial is isotropic natave
(3) Weisht of the materiat shaid be neglected
(4) Driberiple of superpostom is conssolined as vahiod:

1d Strength frimline Theories are tytypes
(a) Max. skow strees failuse Treosy
(b) Max. strain fariluxe Theery
(c) Sai HWl failux Theery
(d) Soi Wy failuse theery.

1e factors considered while ectection manufactroing pooces for compostues
(a) strenges of a fiber/matrix
(b) Stiftuss of a fiber /mation
(C) Type of process
(d) Fiber orientation
(e) Fiber \& matrix weisht
(f) Magritude of defects at the end of the procecs
(9) Sige of lie fiber (or diameter)

If Naturally found composites examples:-
(1) Bone
(2) wood
(3) Granite stone
(4) 100π

Wr) Plesh of animel
ipes of stacs fibens
(a) A-glacs fibers
(b) E-glaes fiber
(c) S- glass fiber
(d) D- glacs fiber
(c) (- Glass fiber
(2) Given Data

$$
\begin{align*}
& E_{f}=85 \mathrm{GPa} ; E_{m}=3.4 \mathrm{GPa} ; G_{f}=35.42 \mathrm{GPa} ; G_{m}=1.308 \mathrm{GPa} \\
& V_{f}=0.25 \text { and } \quad V_{m}=0.5 ; V_{f}=70 \%=0.7 \\
& V_{m}=1-0.7=0.3
\end{align*}
$$

Sol:
(1) Longitudind Modulus (E_{1}) $=E_{f} W_{f}+E_{m} V_{m}$

$$
\begin{gathered}
=85 \times 0.7+3.4 \times 0.3=60.52 \mathrm{GPa} . \\
E_{1}=60.52 \mathrm{GPa}
\end{gathered}
$$

(2) Transverce modulus (E_{2})

$$
\begin{align*}
& \frac{1}{E_{2}}=\frac{V_{f}}{E_{f}}+\frac{V_{m}}{E_{m}} \\
& \frac{1}{E_{2}}=\frac{0.7}{85}+\frac{0.3}{3.4}=-96.47 \times 10^{-3} \\
& E_{2}=\frac{1}{96.47 \times 10^{-3}}=10.36 \mathrm{GPa} \\
& E_{2}=10.36 \mathrm{GPa}
\end{align*}
$$

(3) In plane shear modulus $\left(G_{12}\right)$

$$
\begin{aligned}
& \frac{1}{G_{12}}=\frac{V_{f}}{G_{f}}+\frac{V_{m}}{G_{m}} \\
& \frac{V_{1}}{G_{12}}=\frac{E_{f}}{2\left(1+V_{f}\right)}=\frac{G_{f}}{2(}
\end{aligned}
$$

$$
\begin{align*}
G m=\frac{5 m}{2\left(1+V_{m}\right)}=\frac{3.4}{2(1+05)} & =2.55 \mathrm{GPa} \\
\frac{1}{G_{12}} & =\frac{0.7}{5312}+\frac{0.55 G \mathrm{Ga}}{2.55}=130.82 \times 10^{3} \\
G 12 & =\frac{1}{130.82 \times 10^{-3}}=7.64 \mathrm{GPa} \\
G 12 & =7.64 \mathrm{GPa}
\end{align*}
$$

(4) Major poissone ratrec $\left(V_{12}\right)$

$$
\begin{align*}
V_{12} & =V_{f} V_{f}+V_{m} V_{m} \\
& =0.25 \times 0.7+0.5 \times 0.3 \\
V_{12} & =0.325
\end{align*}
$$

(3) Given Data

$$
\begin{align*}
& \sigma_{1}=4 \mathrm{MPa} ; \sigma_{2}=2 \mathrm{MPa} ; \tau_{12}=-3 \mathrm{MPa} \\
& E_{1}=204 \mathrm{GPa} ; E_{2}=18.5 \mathrm{GPa}= \\
& V_{12}=0.23 ; G_{12}=5.59 \mathrm{GPa}
\end{align*}
$$

21 Strees stosain relation is given as

$$
\left.\begin{array}{l}
\{\in\}=[s]\left\{\begin{array}{l}
\{\sigma \\
\{
\end{array}\right\} \text { shat form } \\
\epsilon_{2} \\
\epsilon_{6} w v_{12}
\end{array}\right\}=\left[\begin{array}{ccc}
s_{11} & s_{12} & 0 \\
s_{21} & s_{22} & 0 \\
0 & 0 & s_{60}
\end{array}\right]_{3 \times 3}\left\{\begin{array}{l}
01 \\
\sigma_{2} \\
\tau_{12} \sigma_{6}
\end{array}\right\}
$$

$[S]=$ Compliance matrix for a lamina

$$
S_{11}=\frac{1}{E_{1}}=\frac{1}{204 \times 10^{9}}=4.90 \times 10^{-12} \mathrm{~Pa}^{-1}
$$

$$
S_{22}=\frac{1}{E_{2}}=\frac{1}{18.5 \times 10^{9}}=5.405 \times 1
$$

Dr. T. JAYACHANDRA PRASAD UEPAD FREEEEEUNFEXUSTEMEEE R G M College of Engg. \& Tech., NANDYAL-518501, Kurnool (Dt), A.P.

Now we have to calculate Minor poissoris $30+10\left(\nu_{2 i}\right)$

$$
\begin{aligned}
& \frac{v_{i j}}{E_{i}}=\frac{v_{j i}^{i}}{E_{j}} \quad \text { i+j } \quad \text { ler, } \quad j=1 \\
& \frac{v_{i 2}}{E_{1}}=\frac{V_{21}}{E_{2}} \\
& V_{21}=\frac{E_{2}}{E_{1}} V_{12}=\frac{18.5}{204} \times 0.23 \\
& v_{21}=0.02085
\end{aligned}
$$

$$
Q_{22}=\frac{E_{2}}{1-V_{12} V_{21}}=\frac{15.5}{(1-0.23 \times 0.02085)}
$$

$$
=18.589 \times+\theta G P a
$$

$$
\begin{aligned}
& 36=\frac{1}{5.59 \times 10^{9}}=1.9 \mathrm{~s} \times 10^{10} \mathrm{pm} \\
& S_{21}=\frac{V_{12}}{E_{1}}=\frac{-0.23}{204 \times 103}=1.122 \times 10^{12} \mathrm{~Pa}^{1} \\
& S_{21}=1.127 \times 10^{-12} \mathrm{pa}^{-1} \\
& \text { Compliance matox }=[s]=\left[\begin{array}{ccc}
s_{11} & s_{12} & 0 \\
s_{21} & s_{22} & 0 \\
0 & 0 & s_{6}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4.90 \times 10^{-12} & 1.129 \times 10^{-12} & 0 \\
1.127 \times 10^{-12} & 5.405 \times 10^{-11} & 0 \\
0 & 0 & 1.755 \times 10^{-10}
\end{array}\right] \mathrm{Pa}^{-1}
\end{aligned}
$$

$$
\begin{gathered}
Q_{12}=Q_{21}=\frac{E_{2} O_{12}}{1-v_{12} V_{21}}=\frac{18.5 \times 0.23}{(1-0.23 \times 02085} \\
Q_{21}=4.27 G \mathrm{Ga} . \\
Q_{126}=G_{12}=5.59 \mathrm{~Pa} \\
{[Q]=\left[\begin{array}{ccc}
204.98 & 427 & 0 \\
427 & 18.58 & 0 \\
0 & 0 & 559
\end{array}\right] \mathrm{GPa} .}
\end{gathered}
$$

We know liat

$$
\sigma_{1}=Q_{11} \epsilon_{1}+Q_{12} \epsilon_{2} \Rightarrow 204.98^{\times 100} \times \epsilon_{1}+4.27 \times 10^{9} \times \epsilon_{2}
$$

$$
\begin{align*}
& \{\sigma\}=[Q]\{\epsilon\} \\
& \left\{\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\tau_{12}
\end{array}\right\}=\left[\begin{array}{ccc}
Q_{11} & Q_{12} & 0 \\
Q_{21} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{array}\right]\left\{\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\theta_{12}
\end{array}\right\} \\
& 4 \times 10^{6}=204.98 \times 10^{9} \epsilon_{1}+4.27 \times 10^{9} \epsilon_{2} \tag{-1}\\
& \sigma_{2}=Q_{21} \epsilon_{1}+Q_{22} \epsilon_{2} \\
& 2 \times 10^{6}=4.27 \times 10^{9} \epsilon_{1}+18.58 \times 10^{9} \times \epsilon_{2} \tag{2}\\
& T_{12}=Q_{66} \times \gamma_{12} \\
& -3 \times 10=5.59 \times 10^{9} 812 \\
& f_{12}=536.67 \times 10^{-6} \\
& \epsilon_{1}=1.563 \times 10^{-5} \\
& \theta_{2}=-2.943 \times 10^{-4}
\end{align*}
$$

Pultrusion process is a highly automated continuous fibs laminating process producing high fiber volume profiles with a constant roes section.

From the in feed area the impregnated reinforcement is pulled into the heated pultrusion die.
the rein matrix is such that solidifies and inures wilt -in the die.

Principal pants B The pultrusion
(1) Fiber creels: Supply the fiber continuous
(2) Resin Tub; provider impregnation (soaking) of fiber with matrix material
(3) Prefororur; It decides final shape of li c product
(4) Curing die: cure the soft material to sind mont
(5) Palling mechanism; It pulls the material form the dose
(6) Cut off die : Cut the finished product at
(7) Guide plate: It combines all fiber pets into strands.

4b Advantages of palterusion
(a) If is a continuous paces
(b) Const. As of any lem size may be made
(c) Very fast process
(d) Resion Content may be controlled accurathy
(e) Fiber cost is minimized since majority of the fiber is takin frem the creals.
Disaduantages of pultousion
(a) Ir's suritable for muly constant ifs not senitable for tapered objacted
(b) Centrol of fitber orientation is not poessoste.
(c) Quick curing system typically have loo Strengers.
(d) Voids may form if excess opening is gruon at the die opening/
(a) Itosh imitral investment.

Applicatrom
(a) slatted floors
(b) Car cases
(c) Puc-Windows
(d) Stiftening bars
(e) Air craft components
(f) flag stack;
(8) Tent
(h) Hovel Construcfion
(1) pancls
sa Ceramic Matrix Composites :-
(a) Ceramic matrix composites (C MC) are sub group of compost materials and sub group of ceramics.
(b) they consist of Ceramic fibers embed ed in a ceramic Maid x.
(c) Fibers and matrix both can consists of any ceramic material where carbas ξ Comber fibers can also be regarded as a Ceramic material.
Properties
(1) Host fracture toughness or Crack resistance
(2) Hos ffexat flexural stronger
(3) Itish tensile stoungit
(4) Low density of fiber.

Typical fiber m/hs are
(a) Carbon, C
(b) Silicon Carbide, Sic
(c) Alumina, $\mathrm{Al}_{2} \mathrm{O}_{3}$
(d) mullite (a) Alumina silica, $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$

These fibers ane temp resistant up $180^{\circ} \mathrm{C}$
Reinforcing fibers are live human hair size and imcase of namo-fiders are even tinier they are often woven into fabric ar tape like materials for inclusion in CMC part.
In a typical comes fibers are coated with boron... nitride and their passed through a matrix a ituiryg bath, resulting in a prepeg tape o. -- is stare at $0<0$ centigrate.

Shot fiber, whisker, ar Continums fber reintorcernent
ases in emo lompestes
Commonly used fitzer/matrix cambinations in cme's
(a) $0 / C$
(b) $c / s i c$
(c) $\operatorname{sic} \mid \operatorname{sic}$
(d) $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Al}_{2} \mathrm{O}_{3}$
$5 b$ Salient features of cmcis:-
(a) They are hard and stable at trisher temp.
(b) Ihey are lisht weisht
$1 / 3$ wt. of nickel superalloys
(c) possess greater fracture toushmess
(d) Hosh thermal shoek resistance.
(e) Retain mish mechanied staunges ait elevated temp,
(f) Excellent strituess \& very gord stability
(8) Econgatron suptare of cme's are up to 1%
(7) they ane no susceptrbte to fracture bive traditienel

Ceramic moterials,
(9) Ligh corrostion resistance.
(J) Hanalle dynamic laads verywell.
(10) 4 Dusable

Advantages
(1) Lisut weisht
(2) much bettor frel $-\eta$
(3) less pallution
(4) Can operate of hish temp:

Heat ex changer's
Turbine blade
Stator vanes
tosh performance braking system,
Immersion burner tabes
Bullet prof of armor
Heating elements
Gas - for fired burner parts, etc.
Limitations
(a) Low impact resistance
(b) Brittle fracture
(c) Past size $\&$ shape limitation
(1) Defect Size effect
(e) limited load level during sliding, 3 m
forcement materials used in metal matrix composites
(MAC's) :-

continuous fibers
(MAC's) :-

continuous fibers
Shot fiber
Whiskers
Equiaxed particles
Interconnected networks.
Equiaxed particles
Interconnected networks.
ib Al- silicon carbide Cparticles
Properties

- Reduced weishr
- Hist stoufth
hear \&t resistance
$-7 \mathrm{~m}$
Ga Reinforcement materials used in metal matrix composites

Application 2 pistons.

Aluminum - silicon Canbide (Whiskar)

- Hishnear reststance
- Reduced weiklat

Redueed seciprocatring mais

- Hish sp. Stizangtis o stitures

Applicetrens
Brake rotore, cotipus, biners, sprockets, pulleys,

Alunvinum - aluminuem oxide (Shost fibers):-
Wear resostance Hres namning temp.
Reduced reciprocating mats
Hish creep \& fatigne resistance
Applicatrens
Connecting rods
Copper -Graphite
Low friction \& wear
Low co-ett of theronel expansiars
Aluminum - Graphite
Call resrstance
Reduce, fricitom, wear sessitance
Appins
cylinders,
limer platon, Bearings.

Anisotropic materiat had "2s' elabtic constants at a potati" once this constants are forma for a pontreenlan potut, Stress -strain relations are developed.
(b) Monoclinic Materials:-

- Ir has ane plane of symmetry
 ie 1-2 plane is the plane of symmetory
- '3' divectron is for to lhe plane of symme
- Shean Stacir $\gamma_{23}=0 ; \gamma_{31}=0$
- If has (13) independent elastre co-eftrcient
- If a linear elastic sotid has one plase f
 NANDYAL-518501, Kurnool (Dt), A.P.
(c) Isotoopic Malenits "

$$
\left.\left\{\begin{array}{l}
c_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\tau_{23} \\
\tau_{31} \\
c_{12}
\end{array}\right\}=\left[\begin{array}{ccccc}
c_{11} & c_{12} & c_{12} & 0 & 0 \\
c_{12} & c_{11} & c_{12} & 0 & 0 \\
c_{12} & c_{12} & c_{11} & 0 & 0 \\
c_{12} \\
0 & 0 & 0\left(\frac{11-c 12}{2}\right) & 0 & 0 \\
0 & 0 & 0 & 0 & \left(\frac{c_{11}-c_{2}}{2}\right) \\
0 & 0 & 0 & 0 & 0\left(\frac{c_{11}-c_{2}}{2}\right)
\end{array}\right\} \begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{23} \\
b_{31} \\
f_{12}
\end{array}\right\}
$$

- If has same property in all direction
- It has "two' independent elastor constant totally.
- properties ane direetionefly ôndependent.
- Material Contains infonite no. If phares of material property symmetry passing throueb a point.

Scheme is prepared by
Do. M. Ashok Rumar,
Assoc. professor?
Dept of meeh Ensi.?

$$
\begin{aligned}
& \text { Depr. of men } \\
& \text { RGmCET, Nandyol } \\
& \text { Cell: } 944111559
\end{aligned}
$$

RGM COLLEGE OF ENGINEERING \& TECHNOLOGY (AUTONOMOUS) 28th February-2020
 IV B.Tech I Semester (R15) End Examinations (Supplementary) MECHANICS OF COMPOSITE MATERIALS

 MECH

 MECH}

Time: 3 Hrs
Total Marks: 70
Note 1:Answer Question No. 1 (Compulsory) and 4 from the remaining
2:All Questions Carry Equal Marks
la What is meant by fiber wash?
b Write expression to determine the in-plane shear modulus using Halphin-Tsai criteria.
c Mention some of the applications of carbon-carbon composites?
d Mention two different combinations of matrices and reinforcements for metal matrix composites.
e Define macro mechanics in the analysis of composites.
f List strength failure theories of an angle lamina.
g What are the limitations of hand lay-up technique?
2 The properties of unidirectional Glass/Epoxy lamina are $\mathrm{E}_{1}=38.6 \mathrm{GPa}$, $\mathrm{E}_{2}=8.27 \mathrm{GPa}, \mathrm{v}_{12}=0.26$ and $\mathrm{G}_{12}=4.14 \mathrm{GPa}$. Find the following for a 60° angle lamina of Glass/Epoxy, if the applied stresses are $\sigma_{x}=4 \mathrm{Mpa}, \sigma_{y}=2 \mathrm{Mpa}, \tau_{x y}=-3 \mathrm{Mpa}$
a) Transformed compliance matrix
b) Transformed reduced stiffness matrix
c) Global strains.

3 With the help of neat sketch, explain the following processes for manufacturing of
composites
a) Pultrusion
b) Resin Transfer Molding (RTM)

4 a) Find the strains in the 1-2 co-ordinate system in a uni-directional boron/epoxy lamina, if the stresses in the 1-2 co-ordinate system applied are,
$\sigma_{1}=4 \mathrm{MPa}, \sigma_{2}=2 \mathrm{MPa}, \tau_{12}=-3 \mathrm{MPa}$.
Use the following properties,
$\mathrm{E}_{1}=204 \mathrm{GPa}, \mathrm{E}_{2}=18.5 \mathrm{GPa}, v_{12}=0.23, \mathrm{G}_{12}=5.5 \mathrm{GPa}$.
b) For the above 1-2 co-ordinate system in a uni-directional boron/epoxylamina, find the stiffness matrix [C].
5 a) Enumerate desirable characteristics of fibers in fiber reinforced composites.
b) What are the different types of glass fibers? Explain.

6 a) What do you exactly mean by 'Composite Material'? What advantages does it possess compared to the conventional materials? b) What

7 Using Halphin-Tsai equations, find the longitudinal modulus, transverse modulus and shear modulus of a glass/epoxy unidirectional lamina with 40% fiber volume fraction. Take $\mathrm{E}_{\text {gliss }}=85 \mathrm{GPa}, \mathrm{E}_{\text {epoxy }}=3.4 \mathrm{GPa}, \mathrm{G}_{\text {glass }}=35.42 \mathrm{GPa}$ and $\mathrm{G}_{\text {epoxy }}=1.308 \mathrm{GPa}$.

[^16]Dram. Ashok Kumar RGMCET (AUTONOMOUS)
V B.Tech I Sem K 15) End Examinations (Supply.)
SUB: MECHANICS OF COMPOSITES
Time: 3 HHS BRANCH: ME Max. Marks:70
12
Fiber wash is defined as cleaning of fiber with NaOH chemical in order to remove dust, rust materials af the fiber.
objectives of cleaning
(1) Improve the strength of fiber
(2) To reduce dust rust on the fiber surfaces
(3) To reunove Iequin / Cellulose / starch material which's acturally organic material decreases 85 ans $\sqrt{3}$ of a composite.
$1 b$
$G_{12}=$ Enplane shear modulus

$$
\begin{equation*}
G_{12}=\frac{1}{G_{f}} V_{f}+\frac{1}{G_{m}} V_{m} \tag{1}
\end{equation*}
$$

where
$G f=$ shear modulus of fiber
$G_{m}=n \quad n \quad$ " matrix
$V_{f}=$ Vol fraction of fiber

$$
V_{m}=n \quad \text { in i matrix. }
$$

\qquad
$2 M$
1 Applications of Carbon-Carbon Composite,
Tr's moridy used in missiles, military arrcraft.

- Rocker nozzles
- Exit comer furstrategre missiles,

Compesite matertat woth aflest two Eoratt consts-tuents
pasty, one being a metan necessarily, lha other material moy be dofterent mll or arother matericl, suet an Ceramic or ovganic componind.

When 3 matertale ane precent firs called hybrid cemposite.
(1) Reinforcement (Paotsulate, fiber), Sic, $A l_{2} O_{3}, B 4 C$, (I) Matorx - Aluminium, Be, Tic, TiB2, graphile $7 e \frac{2 m}{M a c r o m e c h a n i a r ~ i s ~}$, N, Ni, No, and
lacromechanics is the study of cempositematerial. behaviour wherein tha material is presuned to the nomogeneour, and the extects of the censtt treents materials are detected only as areeraged appareent maeroscopic properties of emportes

- Laminater are used for maeroscopic analysor
- Laminate constist of fiber im Unidirection with matra

$2 m$

If

1. Max stress failure Theory
2. Max. strain failure Theory
3. Tsai-1till fanlure Theory
4. Tsai Wu failure Theory
5. Iimitations of hand lay-up technique.
6. Cong time to produce
7. Skill is regnised

8. Surface firmin ts oldanined on

$$
\begin{aligned}
& \mathbb{E}_{1}=38.6 G P G . \\
& E_{2}=8.29 G_{1} \\
& V_{12}=026 \\
& G_{12}=4 . M G P G .
\end{aligned}
$$

Sol:

$$
\begin{aligned}
& S_{11}=\frac{1}{E_{1}}=\frac{1}{38.6 \times 10^{9}}=2.59 \times 10^{11} \mathrm{~Pa}^{-1} \\
& S_{22}=\frac{1}{E_{2}}=\frac{1}{8.27 \times 10^{9}}=1.21 \times 10^{10} \mathrm{~Pa} \\
& S_{12}=-\frac{V_{12}}{F_{1}}=\frac{-0.26}{38.6 \times 10^{9}}=6.73 \times 10^{-12} \mathrm{pai}^{-1} \\
& S_{66}=\frac{1}{G_{12}}=\frac{1}{4.14 \times 10^{9}}=2.41 \times 10^{10} \mathrm{~Pa}^{-1}
\end{aligned}
$$

3. a) Paltruston is contionuou process for mannifacturses of cemposite Materrals with constant cross-section.

Pulltrusicn = Pull t Extrusion

1-Fiber Spools/creels
2-Restn impregration
3-pretorones
4 - Heating divs
S. pulling Meehanosm.

Finel products
b. Cut oft saws

A racke of holding cilinder or cone holding threands. or Spools when Sptrining
Then of allows lle reinfurcement fravelurg from de creels down mito the por bats and itoo ter restrin is Coated fibers comes ont Uronpts a gende ban.
preform plates are cortseat components of pultrustonsys as it properly atigns and teeds hie reintorcement to the heated dre.

Matarx Materbel
Reinforcerneves
Glass (E-Slass \& S-gless) unsctunatest polyester epory Carbon Aramid

3b

Mould interior surfaces may be get-coated. If desired the mold is first preloaded with a reinforicing Eliber matria or preform.
Resin transfer moulding uscs the ligusd theronocetrasins To Seturate a fiber prestorm placed in a closed mould. Whis prouss is versatile and can fabricate product with emhedded objects such as foom cores or olher cemponents in addition to fibow (3m) preforms.
4a)

$$
\begin{align*}
& \left.\begin{array}{l|l|}
\sigma_{1}=4 \mathrm{MPa} & E_{1}=204 \mathrm{GPa} \\
\sigma_{2}=2 \mathrm{MPa} & E_{2}=18.5 \mathrm{GPa} \\
\sigma_{12}=-3 \mathrm{MPa} & v_{12}=0.23
\end{array} \right\rvert\, \mathrm{G}_{12}=5.5 \mathrm{GPa} . \\
& \{\epsilon\}=[s]\{\sigma\} \\
& \left\{\begin{array}{l}
\epsilon_{1} \\
\epsilon_{2} \\
\epsilon_{1}\left(v_{12}\right)
\end{array}\right\}=\left[\begin{array}{lll}
s_{11} & s_{12} & 0 \\
s_{21} & s_{22} & 0 \\
0 & 0 & s_{66}
\end{array}\right]\left\{\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\tau_{12}
\end{array}\right\} \\
& S_{11}=\frac{1}{E_{1}}=\frac{1}{204 \times 109}=4.9 \times 10^{-12} \mathrm{~Pa} \\
& S_{22}=\frac{1}{E_{2}}=\frac{1}{185 \times 10^{9}}=5.40 \times 10^{-11} \mathrm{pa}^{-1} \\
& S_{66}=\frac{1}{G_{11}}=\frac{1}{5 \cdot \min 9}=1.818 \times 10^{-10} \mathrm{~Pa}^{-1}
\end{align*}
$$

$$
[S]=\left[\begin{array}{ccc}
S_{11} & S_{12} & 0 \\
S_{21} & S_{22} & 0 \\
0 & 0 & S_{60}
\end{array}\right]=\left[\begin{array}{ccc}
4.9 \times 10^{-12} & 1.12 \times 10^{-12} & 0 \\
1.12 \times 10^{-12} & 5.4 \times 10^{-1} & 0 \\
0 & 0 & 1.818 \times 10^{-10}
\end{array}\right] \mathrm{Pa}^{-1}
$$

To calculate minor porssions ratio. U_{21} Betti Reciprocal Raw has to be used

$$
\frac{V_{i j}}{E_{i}}=\left.\frac{V_{j i}}{E_{j}}\right|^{V_{12}}=\frac{V_{21}}{E_{2}}=\frac{0.23}{204}=\frac{V_{21}}{18.5}
$$

We know that

$$
v_{21}=\frac{18.5}{204} \times 0.23
$$

$$
\left\{\begin{array}{l}
\sigma_{1} \tag{5m}\\
\sigma_{2} \\
\sigma_{3}
\end{array}\right\}=\left[\begin{array}{ccc}
Q_{11} & Q_{12} & 0 \\
Q_{21} & Q_{22} 0 \\
0 & 0 & Q_{66}
\end{array}\right] \quad\left\{\begin{array}{l}
\epsilon_{1} \\
\epsilon_{2} \\
\theta_{12}
\end{array}\right\}
$$

$$
v_{21}=0.020
$$

$$
\{\sigma\}=[\bar{Q}]\{\epsilon\}
$$

where $[Q]=$ Reduced Stretuess matrix

$$
\begin{aligned}
Q_{11}=\frac{E_{1}}{1-V_{12} V_{21}} & =\frac{204 \times 109}{1-0.23 \times 0.020}=2.048 \times 10^{11} \\
Q_{22} & =\frac{E_{2}}{1-V_{12} V_{21}}=\frac{18.5 \times 109}{1-0.23 \times 0.020}=1.85 \times 10^{10} \\
Q_{266} & =G_{12}=5.5 \times 10^{9} \mathrm{Ma}
\end{aligned}
$$

$$
=4.27 \times 10^{9} \mathrm{~Pa}
$$

451

$$
\begin{aligned}
& \left\{\begin{array}{c}
4 \times 10^{6} \\
2 \times 10^{6} \\
-3 \times 10^{6}
\end{array}\right\}=\left[\begin{array}{ccc}
2.048 \times 10^{11} & 4.2) \times 10^{9} & 0 \\
4.27 \times 10^{9} & 1.55 \times 10^{10} & 0 \\
0 & 0 & 5.5 \times 10^{9}
\end{array}\right]\left\{\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\gamma_{1}
\end{array}\right\} \\
& 4 \times 10^{6}=2.045 \times 10^{11} \times \epsilon_{1}+4.27 \times 10^{9} \times \epsilon_{2}+0 \\
& 2 \times 10^{6}=4.27 \times 10^{9} \times \epsilon_{1}+1.85 \times 10^{10} \times \epsilon_{2}+0 \\
& -3 \times 10^{6}=0+0+5.5 \times 109 \text { 86 } \\
& v_{12}=\frac{-3 \times 10^{6}}{5.5 \times 10^{9}}=-5.45 \times 10^{-4} \\
& \epsilon_{1}=1.568 \times 10^{-5} \\
& \epsilon_{2}=2.945 \times 10^{-4}
\end{aligned}
$$

5. (a) Desivable characteristics of fibers.
1) Improves the strength to wersht ratho
2) Fiber lensts to widtr ratio
3) Goad 5 trenst 15 and fleaibitly
4) less diameter fo the firber
5) Fibor cohesivenest
b) Fibor elesticity
6) unitoron ofs aree
7) Adequate strensto (Tenality)
8) Cohesiveness
(1) uniformity

5 (b) Types of Glass fibess
in alnu \rightarrow also called atrati glass
3ns.

- offers resistance to Ohemical impact
- also called chemricel glaces
$E-g l a s \rightarrow$ Also called electrical glass
\rightarrow Kmowns for mechamicat properties
AE-glass \rightarrow Alkali nessstance glass
s-glass \rightarrow structuret glass and knowon for mechanicel properties

Fiber glass comes frem
(1) Fiber glass tape
(2) Fiber slans chots
(3) Fitzerglass rope.
(6) (a) composite : process of combining two or mere matertals M order r or poduce new matertel
f Constituent materials have ditterent phosieal and chemicat properties

+ new matertat has detterent propertres from le individual $\%$ materials.
+ Constituent I-Matorx
Constituent 2 Reinforcement

Adv
(1) Hegher sp-stocngTs than metals in non metals
(2) Lower Sp orauity
(3) Irmproved Stituers of the matertel
(G) Mainterin lhein wo ... euen at hish temps
(1) Maintern
(I) Toughness is mproved
(b) Fabrication \& produetser os oheaper

6(b) Mechanical properties of polyoner matoic (umposites (PMC's)
(t) Hish steengts to weisht ratio
(2) Hish sp. Stitimess to weisht setbo.
(3) Hish Stitumes
(4) litish dineability
(5) Hish corroston resistance.
(6) Properties can be taitosed
(7) Better fationue performance thans metals in tensson
(8) No furmace is zejurted.
(F)

$$
\begin{align*}
& E_{\text {slass }}=E_{f}=85 G P a \\
& E_{\text {epory }}=E_{m}=3.4 G p a \\
& G_{\text {glacs }}=G_{f}=35.42 G p a \\
& G_{\text {epory }}=G m=1.308 G p a \\
& V_{f}=0.4 \\
& V_{m}=1-0.4=0.6 \quad \because V_{f}+V_{m}=1
\end{align*}
$$

Find

1) $E_{1}=E_{f} V_{f}+E_{m} V_{m}=85 \times 10^{9} \times 0.4+3.4 \times 10^{9} \times 0.6$
2)

$$
\text { 2) } \begin{aligned}
\frac{1}{E_{2}}=\frac{V_{f}}{E_{f}}+\frac{V_{m}}{E_{m}} & =\frac{(85 \times 0.4+3.4 \times 0.6) \times 10^{9}}{8.4}+\frac{0.4}{8.5 \times 10^{9}}+\frac{0.6}{3.4 \times 10^{9}} \mathrm{~Pa} \\
\text { 3) } \frac{1}{G_{12}}=\frac{V_{f}}{G_{f}}+\frac{V_{m}}{G_{m}} & =\frac{0.4}{35.42 \times 10^{9} \mathrm{~Pa}}+\frac{0.6}{1.308 \times 10^{3}} \\
& =2.62 . \mathrm{Pa} \quad 4.7 \times 10^{9} \mathrm{~Pa}
\end{aligned}
$$

[^17]Note I:Answer Question No. 1 (Compulsory) and 4 from the remaining
2:All Questions Carry Equal Marks
La What is a angle ply lamina? What is its significance?
b What are the metal matix composites?
c What is a failure Emvelope?
d List few advantages of Vacum Bag molding?
e What are the typical mechanical properties of carbon fiber?
f How many independent clastic constants recuired to define an orthotropic material?
g State generalized Hooke's law for 2 D cross ply lamina.
2 a) Write the number of independent elastic constants for anisotropic, orthotropic, monoclinic, transversely isotropic and isotropic materials.
b) Find the relationship between the engineering constants and its compliance matrix for an orthotropic material.
(8)

3 a) With the help of neat sketch, explain Spray lay up process for manufacturing of composites.
b) List advantages, drawbacks and applications of Spray lay-up process.

1) a) What are particulate composifes? Enumerate their salient features, advantages, - limitations.
b) What are the different reinforcements used in ceramic matrix composites? Explain.

5 The properties of undirectional graphite/opoxy lamina are $E_{1}=181 \mathrm{GPa}, \mathrm{E}_{2}=10.3$ GPa, $v_{12}=0.28$ and $\mathrm{G}_{12}=7.17$ GPa. Find the following for a 60° angle lamina of graphite/epoxy
a) Transformed compliance matrix
b) Transformed reduced stiffess mataix.

6 Find the four clastic moduti of a umidectional glass/epoxy lamina with a 70% fiber volume fraction. Use mechanics of materials approach. Take $\mathrm{E}_{\mathrm{r}}=85 \mathrm{GPa}, \mathrm{E}_{\mathrm{n}}=3.4$ $\mathrm{GPa}, \mathrm{G}_{\mathrm{f}}=35.42 \mathrm{GPa}, \mathrm{G}_{\mathrm{m}}=1.308 \mathrm{GPa} . \mathrm{v}_{\mathrm{f}}=0.25$ and $\mathrm{v}_{\mathrm{ri}}=0.5$.
7 Give the complete classification of composite materials? Briefly explain each type of composites citing one example in cach category.

$$
\begin{aligned}
& \text { 61314. } \\
& 2,23,22,33 \\
& 21,2,2,29,31: 38
\end{aligned}
$$

RGM College of Engs \& Technology
IV B.Tech I-sen (Ris) End Exams (Supply)
Mechomics of Composite Matersals
1(a)
Angle ply is defimed as the fibers are oriented from 0° to 90° orientation in the fiber macit is known as angle ply.

Ex:

It's significance is to stixugth in all directrons other tham x \& y axis.
(b) Metal Matrix composites (MMC)

MMC's consists of at least two constituent parts one being metal necessarily, anoltior matal may be a difterout material such ase Ceramic (or) organric compount

When at least 3-materal, ase preseit is called Hybrol cemposite:

$$
\text { Material } 1-M a t r i x \rightarrow \text { mondithic Matertat }
$$

In which reinforcement is embedded and is complat Continumens

Ex: Alewinum, maguestum, tstomiuns
Cobalt, cobalt-nickel allork

Materid - 2 - Reinforcament' Psembedoled roto a mater obvel iomproves lte stacmge
Ex: Cauban fibers, Alumina, silicon conbtobe
I(C)

It is a plaxe m whieb max. Shear stocesats or watede platie Whese we ratie of quear strest to normal stoeks is monixim.
lle motris cone. circles ane plotted and a bine tangeutiof to he Mohots Gfetes eireles ane called Mohr Coulomb forallene envelop.
(d) Advantages
(1) Hisher fiber content Raminates can be achive wits standard wat Layup teehmiqur
(2) Lan void contents

$$
\begin{aligned}
& 0.5 \\
& 0.5 \\
& 0.5
\end{aligned}
$$

(3) Better riber wet-out
(1) Healthy $\&$ soty satsety.

1 (e) Mewhamio poperthes of ct'
(1) Hosh siakig to weskt matio (t) 5
(2) Rigletity
(3) tren fatigin xerstance,
(4) Geid tonsile streusth but britle \qquad
(5) Fix xerstance
(6) Low thermal co-eft of expai

If On Thotropic mozemals have dettereat propertace along ? mutually 1 t two fold axes of $(x, y, 2)$ trise oretinah Wher, eordoutas sotationat symmetoy,

These ame cubcep of amisetaptic materiats, becour Theit popertiees chaige when measmsed prem different direetrons.

Ex: 100001

This matericl consists of 3 Lar planes of symmetry
3 modulus of elastocitine, or 3 Sheon modulus.
$\frac{0.5}{2}$ For evaluatseg asthotropic matement, we requiked Nime molependeut Conetants. to have a spoesStrain relatom
(19)

Generalized Hooke's law for 2D crost \& ploge limina

$$
\left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\left[\begin{array}{lll}
Q_{x x} & Q_{x y} & Q_{x s} \\
Q_{y x} & Q_{y y} & Q_{y s} \\
Q_{s x} & Q_{s y} & Q_{s s}
\end{array}\right]\left\{\begin{array}{l}
\epsilon_{y} \\
\epsilon_{y y} \\
\gamma_{x y}
\end{array}\right\}
$$

$$
\begin{aligned}
& \text { colure } \\
& Q_{01 x}=m^{4} Q_{11}+n^{4} Q_{22}+2 m^{2} n^{2} Q_{125} \\
& 4 \text { min }^{2} 266 \\
& \begin{aligned}
Q_{y y}= & n^{4} Q_{11}+m^{4} Q_{22}+2 m^{2} n^{2} Q_{12}+4 m^{2} n^{2} \\
& Q_{66} \\
Q_{x y}= & m^{2} n^{2} Q_{11}+m^{2} n^{2} Q_{22}+\left(m^{4}+m^{4}\right) Q_{12}
\end{aligned} \\
& \therefore 4 m^{2} m^{2} Q G \\
& Q s s=m^{2} n 2 Q_{1}+m^{2} n^{2} Q_{2} 2-2(n
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q } \left.x s=m^{3} n Q_{11}+\operatorname{mr}^{3} Q_{2.2}+\left(m_{1}\right)^{3}-m^{3} r\right) Q_{12}+2\left(m n^{3} m_{6}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { where }
\end{aligned}
$$

$$
\begin{align*}
& Q_{11}=\frac{E_{1}}{1-V_{12} V_{21}} \\
& Q_{22}=\frac{E_{2}}{1-V_{12} V_{21}} \tag{1}\\
& Q_{12}=Q_{21}=\frac{V_{12} E_{2}}{1-V_{12} V_{21}} \\
& Q Q_{6}=G_{12}
\end{align*}
$$

2(a)
Anisotropic Material

For definig ansitutropic materiel '21" wattorat censtants are requised

From lle symmitry

$$
\begin{aligned}
& S_{j}=S_{j i} \\
& E_{x}: S_{12}=S_{21}
\end{aligned}
$$

Orthotropte Matersel
3 fr plancs of symmetry
3 Modulus of elactionta,
3 Shear modulen.
For evaluating or thotropic or

2(b)

$$
\begin{align*}
& \begin{array}{l}
\text { Orthetrapte Matcotal } \\
\epsilon_{1}=\frac{\sigma_{1}}{E_{1}}-\frac{v_{21} \sigma_{2}}{E_{2}}-v_{31} \frac{\sigma_{3}}{E_{3}}
\end{array} \\
& E_{2}=-v_{12} \frac{\sigma_{1}}{E_{1}}+\frac{\sigma_{2}}{E_{2}}-v_{33} \frac{\sigma_{3}}{E_{3}} \\
& \epsilon_{3}=-v_{13} \frac{D_{1}}{E_{1}}-v_{23} \frac{\sigma_{2}}{E_{2}}+\frac{e_{3}}{E_{3}} \\
& v_{23}=\varepsilon_{4}=\frac{\tau_{23}}{G_{23}} \quad \tau_{23}=54 \tag{3}\\
& A_{31}=\varepsilon_{5}=\frac{\tau_{31}}{G_{3}} \quad \because \tau_{31}=\sigma_{5} \\
& V_{12}=\varepsilon_{6}=\frac{T_{13}}{G_{12}} \quad \because T_{12}=86
\end{align*}
$$

Monodiwic Materrels

* It has one place of

Syminetry ($1-2$)
\# 3 directions is 1 or to ke plane of syonuratiang

Trambuersely I sotrape materiont

$$
\left\{\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\tau_{23} \\
\tau_{31} \\
\tau_{12}
\end{array}\right\}=\left[\begin{array}{ccccc}
c_{11} & c_{12} & c_{13} & 0 & 0 \\
c_{12} & c_{11} & c_{13} & 0 & 0 \\
c_{13} & c_{13} & c_{33} & 0 & 0 \\
c_{13} \\
0 & 0 & 0 & c_{14} & 0 \\
0 & 0 & 0 & 0 & c_{44} \\
0 & 0 & 0 & 0 & 0\left(\frac{c_{11}}{2}\right)
\end{array}\right\}\left\{\begin{array}{l}
c_{11} \\
c_{22} \\
c_{33} \\
r_{23} \\
x_{31} \\
f_{12}
\end{array}\right\}
$$

5 Indeprmdent censt. ane requitiol.
Isotropic Matesial NANDYAL-518501, Kurnool (Dt), A.P.

Equate eqn (1) \& eqm (2)

$$
\begin{aligned}
& S_{11}=\frac{1}{E_{1}} ; S_{12}=-\frac{v_{21}}{E_{2}} ; S_{13}=-\frac{v_{31}}{E_{3}} \\
& S_{21}=-\frac{V_{12}}{E_{1}} ; S_{22}=\frac{1}{E_{2}} ; S_{23}=\frac{-v_{32}}{E_{3}} \\
& S_{31}=-\frac{v_{13}}{E_{1}} ; S_{32}=\frac{-v_{23}}{E_{2}} ; S_{33}=\frac{1}{E_{3}} \\
& S_{44}=\frac{1}{G_{23}} ; S_{55}=\frac{1}{G_{13}} ; S_{66}=\frac{1}{G_{12}}
\end{aligned}
$$

Inverse of compliance matrix is called stifles matrices Sometime if is also called modulus Matrix (or) Elasticity matrix. Commonly denoted by 'cs

$$
\left\{\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\tau_{23} \\
\tau_{13} \\
\tau_{12}
\end{array}\right\}=\left[\begin{array}{cccccc}
c_{11} & c_{12} & c_{13} & 0 & 0 & 0 \\
c_{21} & c_{22} & c_{23} & 0 & 0 & 0 \\
c_{31} & c_{32} & c_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & c_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & c_{55} \\
0 & 0 & 0 & 0 & 0 & c_{66}
\end{array}\right]\left[\begin{array}{l}
\varepsilon_{1} \\
c_{2} \\
\epsilon_{3} \\
r_{23} \\
r_{13} \\
v_{12}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{2} \\
\tau_{x y} \\
\tau_{y 2} \\
\tau_{2 x}
\end{array}\right\}=\left[\frac{E}{1+v(1.2 v)}\right.
$$

$(i-v)$ iv v oo $\begin{array}{cccccc}v & (v) & v & 0 & 0 & 0 \\ v & v & (1-v) & 0 & 0 & 0 \\ 0 & 0 & 0 & \left(\frac{1}{2}\right. & -v) & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \left(\frac{1}{2}-v\right) & 0 \\ 0 & 0 & 0 & 0 & 0 & \left(\frac{1}{2}-v\right)\end{array}$

\# polyester vecin win Slass fiber rovings are used if Il's used buen one side os requilsed fintsting if large quantibtiey are meta otreppleg \# core un/t may fre added.

3 (b) Adventage,
(1) Suitable for small \& medium volumes
(2) It's a very econowrieal proces for making small and lasge parts
(3) Needy low cost toaungr, low ooer
materiels;
sadnantagey
(i) Not cuniable for porits zequibed hish stractarel zogindementy
(2) Dtffrupt to centon fiberandresin (2) volume fraetroms
(3) Due 10 open mould ewaission is a Concerm
Appliections
Boti, tabs
Boat hulls
Gtorage tanks
Swimmaing pots

4(a) As parrenbates ane smaller of size $0.01-0.1 \mathrm{Mm}$ ye Stige Stizengtheining oecurs at atomic / moleculer level.

Ex:
(1) Thorium $($ ThO2 $)$ is diepereed in Ni-allogs
(2)

$$
\begin{gathered}
\text { Sintered aluminum }+\quad \text { smallflakes of } \\
\text { pooder } \\
\text { alumsina }\left(A_{2} 03\right)
\end{gathered}
$$

Partides are derpersed nandomly

Ade
(1) provides reintorcement to the Matora
(2) Improved mechainical propertios
(3) Failored mile propertoes
(4) Manufactuming fleatbrity
(5) Hish creap rerstance
(6) Hrsh tenssbe stemengen at eleveted fanp:
(9) High toughwers
(8) Itrst stoengu, to weignt ratio

Dosadu
(1) It used for likn streusin matemal,
(9) Poor ducfreity
(8) Strengtin depenals on unitor.

4(1) Dttrant reinforeements usedim ceramicuation cmpond
\# Ceramic madonix composites ase sub-group of compostc material,

11 They censists of ceramic fibers embedded im a cerramie materx.
"The following improvements over ceramices
(i) Degree of amisotropy on in corporation of fobers
(2) Sncersest fractare toushuses
(3) Elongation to raptase up 60%
(4) Hostor dynamic loend capaerty
common flbers used in Ceramic matorix composte,
(1) Silicun canbide (Sic)
(2) Carbon Pibers
(3) Zircomia fibur
(4) Akamaina. Boron fiber
(5) Boron Carbide flbers
(6) Titamium Bonde (TiB2)
(7) Alumi num nitrode ($A \mid N$)
(8) Irreorium oxide (ZrO2)
(1) Sic Fiber

If sic is
Cesamic matertal yut lisht wersit and covalentiy bonded materid.

* Hosh structurel stabitita
\# Lea thesmat ce.ett of expanstion
H Hrsh streuget and hasedwes
\& Hosh melting point $273^{\circ} \mathrm{C}$
it Hish thurmed shouse resistamee.
(2) Coubers Pibrers
properties
(1) Hesc tengle slewengto
(2) Hish extensten \& break.
(3) Hish Stbitimes
(4) Low thermat co-et of expms.
(y) Low density
(8) Wreh bear reststanees
(9) Long workies life
(8) Five Hrmer Stronger and too times sinfer lian steel
Faboseatoon proces

Drsaduantagen

(2) Bit harmful
(3) Brittenss

Applicotons
Rackets
golf stickess
Mobile cases
Recharge batterme fret cells
(3) Boron fibers
\# Chemical rapour deposition proeest is turent to produce boron fibers
\# These ane Ceramic mono-filamess fibers \# Riteres itacelt composiones

* Circular c/s
\# fiburs dia range b/w 33-400 Mm

$$
\begin{aligned}
& E_{1}=181 \mathrm{GPG} \\
& E_{2}=10.3 G P G \\
& v_{12}=0.28 \\
& G_{12}=7.17 G \mathrm{PG} . \\
& \theta=60
\end{aligned}
$$

solutron
WKT
(1) Hish Tensile St renast (M00 GPOA)
(2) Hich camprecsive stowegta
(Goompa)
(3) Low thermat co-ett if Caparnozon

$$
\alpha=4.5 \text { ppisico }
$$

(4) low density $e=2.579 / \mathrm{cm} / 3$

$$
\left[\begin{array}{ll}
S_{x x} & S_{x y} \\
s y x & S_{y y} \\
s s x & s
\end{array}\right.
$$

$\frac{x^{2}}{1 / 60 \%}$
buposi

$$
\begin{aligned}
m=\cos 60 & =0.5 \\
n=\sin 60 & =0.566
\end{aligned}
$$

Tramsfermed Reduced stitheres motrix

$$
\begin{aligned}
& Q_{11}=\frac{E_{1}}{1-v_{12} v_{21}} \\
& \frac{\theta_{12}}{E_{1}}=\frac{v_{21}}{E_{2}} \\
& Q_{i 1}=\frac{181 \times 109}{1-0.28 \times 0.0159} \\
& =1.818 \times 10^{1} \mathrm{~Pa} \\
& V_{21}=\frac{E_{2}}{E_{1}} V_{12} \\
& =\frac{10.3}{151} \times 0.28 \\
& =181.8 \times 109 \mathrm{~Pa}=181.59 \mathrm{PG}=15.9 \times 10^{3} \\
& v_{21}=0.0159 \\
& Q_{22}=\frac{t_{2}}{1-v_{12} v_{21}}=\frac{10.3 \times 109}{1-0.28 \times 0.01597}=
\end{aligned}
$$

$$
S_{11}=\frac{1}{E_{1}}=\frac{1}{181 \times 10^{9}}=5.524 \times 10^{-12} \mathrm{pd}
$$

$$
S_{22}=\frac{1}{E_{2}}=\frac{181 \times 10^{9}}{10.3 \times 10^{9}}=9.708 \times 00^{11}
$$

$$
\begin{aligned}
& S_{12}=\frac{V_{12}}{E_{1}}=\frac{-0.28}{181 \times 10^{9}}=-1.546 \times 10^{12} \mathrm{pa} \\
& C_{1}=1.404 \times 10^{10} \mathrm{P}
\end{aligned}
$$

$$
\begin{equation*}
S_{66}=\frac{1}{G_{12}}=\frac{1}{7.17 \times 10^{9}}=1.404 \times 10^{10} \mathrm{~Pa} \tag{1}
\end{equation*}
$$

Reduced transpormed compliance Maton2

S_{11}	$S 22$	S_{6}	S_{6}
$S_{y y}$	n^{4}	n^{4}	$2 m^{2} 2 n^{2}$

$$
\begin{align*}
& S_{x x}=8.08 \times 10^{-11} \mathrm{~Pa}^{-1} \\
& s_{y y}=3.506 \times 10^{-11} \mathrm{~Pa}^{-1} \quad s_{s}=s_{11} 4 \mathrm{c}^{2} \mathrm{~s}^{2}+s_{22} 4 \mathrm{c}^{2} \\
& \sin y=-8.05 \times 10^{-12} \\
& -c_{12} 8 c^{2} s^{2}+566 \\
& \left(c^{2}-s^{2}\right) \\
& \text { SSS }=1.109 \times 10^{-11} \mathrm{Da}^{-1} \quad S_{x s}=S_{11} 2 c^{3} s-S_{22^{2}} \mathrm{Cs}^{3} \\
& S_{x s}=-1.176 \times 10^{12} \mathrm{~Pa}^{-1}+\mathrm{S}_{12}{ }^{2}\left(\mathrm{E}^{2} \mathrm{se} \mathrm{se}^{3}\right) \\
& +566 \operatorname{cs}^{3} \\
& \text { sys }=-3.843 \times 10^{-11} \mathrm{~Pa}
\end{align*}
$$

$$
\begin{align*}
& Q_{12}=Q_{21}=\frac{E_{2} v_{12}}{1-v_{12} v_{21}}=\frac{10.3 \times 10^{9} \times 0.28}{1-0.28 \times 0.0159} \\
& =2.896 \times 10^{9}=2.899 \mathrm{~Pa} \\
& Q_{66}=G_{12}=7.17 \mathrm{GPa} \\
& m=0.5 \\
& n=0.866 \\
& Q_{x x}=m^{4} Q_{11}+n^{4} Q_{22}+2 m^{2} n^{2} Q_{12}+4 m^{2} n^{2} Q_{66} \\
& =(0.5)^{4} \times 181.5+(0.866)^{4}\left(0.34+2(0.5)^{2}(0.866)^{2} \times 2.59\right. \\
& +4 \times(0.5)^{2} \times(0.80)^{2} \times 7.17 \\
& Q_{y y}=n^{4} Q_{11}+m^{4} Q_{22}+2 m^{2} n^{2} Q_{12}+4 m^{2} n^{2} Q_{Q_{6}} \\
& =(0.866)^{4} 181.8+(0.5)^{4} \times 10.34+2 \times(0.5)^{2} \times(0.566)^{2} \times 2.87 \\
& +4 \times(0.5)^{2}(0.866)^{2} \times 7.17 \\
& Q_{x_{y}}=m^{2} n^{2} Q_{11}+m^{2} n^{2} Q_{22}+\left(m^{4}+n^{4}\right) Q_{12} 2^{2} m^{2} Q_{66}^{2} \\
& =(0.5)^{2}(0.866)^{2} \times\left(81.8+(0.5)^{2} \times(0.866)^{2} 10.3 y+\left(0.54+0.566^{4}\right)\right. \\
& 2.89 \\
& -4 \times(0.5)^{2} \times(0.806)^{2} \times 7.17 . \\
& Q_{S 3}=-m^{2} n^{2} Q_{11}+m^{2} n^{2} Q_{22}-2\left(m^{2}-m^{2}\right) Q_{12}+\left(m^{2} m^{2}\right. \\
& Q 66 \\
& =-(0.5)^{2} \times(0.866)^{2}\left(81.8+(0.5)^{2} \times(0.566)^{2} \times 10.34-2(0.5)^{2}\right. \\
& \times 10.34+\left((0.5)^{2}-(0.86)^{2}\right) 10.176 \tag{2}\\
& \left.Q_{n}=m^{3} n Q_{11}+m^{3} Q_{2} 2+\left(m n^{3} m^{3} n^{\prime}\right) Q_{12}+\right)\left(m n^{3}-m^{3} n\right) Q_{6} \\
& =(0.5)^{3} \times 0.566 \times 181.18+0.5 \times(0.560)^{3} \times 10.34+\operatorname{Co.5\times 0.188} \\
& -(0.5) 3 \times 0.566)+2(0.5 \times(0.561
\end{align*}
$$

(6)

Given Doten

$$
E_{f}=55 G P G
$$

$$
E_{m}=3.4 \mathrm{GPG}
$$

$$
G_{f}=35.42 \mathrm{GPa}
$$

$$
G_{m}=1.308 \mathrm{GPa}
$$

$$
v_{f}=0.25
$$

$$
v_{f}+v_{m}=1
$$

$$
v_{m}=0.5
$$

$$
V_{f}=0.7 ; V_{m}=0.3
$$

(1)

$$
\begin{align*}
E_{1} & =E_{f} V_{f}+E_{m} V_{m} \tag{3}\\
& =85 \times 6050.7+34 \times 0.3 \\
E_{1} & =60.52 \mathrm{GPa}
\end{align*}
$$

(2)

$$
\begin{align*}
& \frac{1}{E_{2}}=\frac{V_{f}}{E_{f}}+\frac{V_{m}}{E_{m}} \\
& \frac{1}{E_{2}}=\frac{0.7}{85}+\frac{0.3}{3.4} \\
& E_{2}=10.36 \mathrm{G8a}
\end{align*}
$$

(3) $\frac{1}{G_{12}}=\frac{v_{f}}{G_{f}}+\frac{v_{m}}{G_{m}}$.

$$
\begin{align*}
I_{G 12} & =\frac{0.25}{35.42}+\frac{0.5}{1.308} \\
G 12 & =2.568 \mathrm{GPa}
\end{align*}
$$

(4)

$$
\begin{align*}
V_{12} & =V_{f} V_{f}+V_{m} V_{m} \\
& =0.25 \times 0.7+0.5 \times 0.3 \\
V_{12} & =0.325
\end{align*}
$$

Prigmer tatence cemposites

Carbon-Carbon
matrax compente.

Most commonly leecal cemposites ane polyiner composite matorx these composites comesists of porymuras a montion malernat 'reinforced by fiber...

Ex: Gass fiber, kevtatiftrer, Garabon fitoer, Bow fibers, Nuton fibers, Goaplutie fitrens

Reesorys
(1) Low cost
(1) Nom furnace reguared
(3) Iisht weisht and hish tromers
(i) Goved corrosten \& chemicel nesistane
(5) Goved Electricat \& mehhanical propertices

Metal Matrix Composotes
Matrix is a esft duritie matertal Ex: Al, Mg, if, Cu, efe.

Typteot fibers incurdes Boran, Carben, Silicon Conbode fiber.
Thied composters ane lesed at laghen service temp. mam lirese base metade.

Reintorcements mas be im lle form Bth... C…ir....... dre.....timenemal. Nots

Reindarcemend properdece
Specific strangrs
statimes
Abraction Desorstance
creep resistance
Thermat conductivity thermal stabrany MMc's ase mose exp. than PMés

Ader
(1) Hrewer seruice temp
(2) Hn elarie popersere
(3) Insensitive It motsture.

(a) Hosher thermat conducftotty.

Ceramic Matrix Composites (CMe's)
Cric's have Ceromric matrix materials sucti as Alumina, Oalcium alummino-siticate betmareadhy fiters suehas carbon, silicen corrbide ete.
$A d u$
(1) Hish strangets
(2) Hondiness
(3) Hosc service temp limits
(0) chumicel reststance

Carbon-Casbon Mátrix Composttes. (CcMás)
Thuse ane bishtemp. resistance composites im oblvich
Cenbon. Aseff as fiber and matrix. in order tir
veduce Thermat stresses.
used hich afocestom ot reststance.
litsen temp resistance.
Heat sivietols,
ail crebtr,

RGM COLLEGE OF ENGINEERING \& TECHNOLOGY (AUTONOMOUS)
 31st March-2021

IV B.Tech I Semester (R15) End Examinations (Regular) MECHANICS OF COMPOSITE MATERIALS
 MECH

Time: 3 Hrs
Total Marks: 70

Note 1:Answer Question No. 1 (Compulsory) and 4 from the remaining
2:All Questions Carry Equal Marks
1a Define mass volume fraction.
b Mention the applications of spray layup process?
c Mention two types of thermoplastic resins.
d Mention the advantages of Invariant Form of Stiffness and Compliance Matrices for an Angle Lamina.
e What are the functions of reinforcements in polymeric composites?
f Differentiate between a lamina and isotropic homogeneous material.
g What are semi-epirical models?
2 a) What is a composite material? Differentiate composite material from metallic alloy.
b) Explain potential applications of composites in the fields of marine, eiectronics, aerospace and automobile.
3 Explain the mechanics of materials approach to determine four elastic moduli of a composite lamina.

4 a) Explain Resin Transfer Molding with a neat sketch.
b) Discus Advantages, disadvantages and applications of Resin Transfer Molding.

5 a) Explain clearly different types of matrix materials.
b) Discuss about the following:
i) Silicon carbide fiber
ii) Boron carbide fiber

6 The Engineering constants for an orthotropic material are found to be
$\mathrm{E}_{1}=40 \mathrm{Gpa}, \mathrm{E}_{2}=9 \mathrm{Gpa}, \mathrm{E}_{3}=9 \mathrm{Gpa}, v_{12}=0.26, v_{23}=0.21, v_{13}=0.21$
$\mathrm{G}_{12}=4.41 \mathrm{Gpa}, \mathrm{G}_{23}=3.8 \mathrm{Gpa}, \mathrm{G}_{13}=3.8 \mathrm{Gpa}$. Find the stiffness matrix $[\mathrm{C}]$ and compliance matrix [S] for the above orthotropic material.
7 Find the Engineering constants for a 30° angle ply lamina. Use the following properties.

$$
\begin{equation*}
\mathrm{E}_{1}=204 \mathrm{Gpa}, \mathrm{E}_{2}=18.5 \mathrm{Gpa}, v_{12}=0.23, \mathrm{G}_{12}=5.59 \mathrm{Gpa} . \tag{14}
\end{equation*}
$$

$$
\begin{aligned}
& S_{x x}=7.27 \times 10^{-11} p a^{-1} \\
& S_{y y}=6.38 \times 10^{-11} p a^{-1} \\
& S_{x y}=-2.317 \times 10^{-11} p a^{-1} \\
& S_{S}=4.52 \times 10^{-10} \\
& S_{x s}=-8.59 \times 10^{-11} \\
& S y s=4.33 \times 10^{-11}
\end{aligned}
$$

III B. Tech I Sem R/5 End Exams. (Regular) cell: 94411158
Sub MCM; Branch: ME
Time = 3 Hrs
Scheme of Evaluation
Max. Marks: 7
1a) Defination of mass fraction
Code: A0 338158 Re 321
(1) It's also known as mass percentage or percentage by mo u
(4) Ir's the ratio of mass of the constituent to that of the total mass of lie composite
$W_{\text {mon }}=$ Mass fraction of the comporstic.
$W_{f}=$ nous fraction of lie fiber

$$
\begin{align*}
& W_{m}=\frac{w_{m}}{w_{c}} \tag{1}\\
& W_{f}=\frac{w_{f}}{w_{c}}
\end{align*}
$$

Where, $\omega_{m}=$ war mass of the matrix.
$w_{f}=$ mass of the fiber
$\omega_{C}=$ mass of te composite

$$
W_{m}+W_{f}=1
$$

$1 b$
Applications of Spray lay up

- Making of custom parts
- Bats tubs,
- Boat hulls,
- Storage tanks
- Furniture components
- Swimming pools.

Ic Thermoplastic materials

- polycarbonate (PC) \quad - polystyrine (PS) - (D)
- poly_viny)-chloride (PVC) \}
- Nylon C polyamides.

Id Advantages

- stresses and strains on pricipel axes are computed?
- stiftiveseses are de so calculated along the any $\begin{gathered}\text { (moduli) }\end{gathered}$ (Moduli)
- poisson's retros com be calculated alone the
given planes.
- Engficonstants can also be calculated

1 R Reinforcements in Polymer Matin composites (PMC)

Ex: Ex: Glass fiber
(1) + (1)

Coirfiber Combenfiber
sisel fiber Kevlar fiber
Bananafiber Silica fiber
If Hemp for ser
Lamina
(1)

It's a layer of fiberous material arranged in a plane with matrix mattoid in one particular direction Ex:

Isotropic

Homogeneous a refers uniformity of the structure of a material, but isotropic materials are hauling Same properties in all direction If the properties ax same in a directions in any location of 1 material is 1 homogeneous

Dr. T. JAYACCHANDRA PRASAD
 NANDVAL-SU18 Sori, , gumboil (It), A.P.

- Developed by Halphin. Isai
(a) E_{1} = youngs modulus along the longitudival axis

$$
=E_{f} V_{f}+E_{m} V_{m}
$$

(b) E_{2} = youngs modulue along it transverat andis

$$
=\left[\frac{1+\xi_{f} V_{f}}{1-\eta V_{f}}\right]^{0} \mathbb{E}_{m}
$$

where

$$
\eta=\left[\frac{\frac{E_{f}}{E_{m}}-1}{\frac{E_{f}}{E_{m}}+\frac{ह}{E}}\right]
$$

(c) G12 = Inplane shear modulus

$$
=\left[\frac{1+\hat{\xi} V_{f}}{1-\eta V_{f}}\right] \times G_{m}
$$

where $\eta=\left[\frac{\frac{G_{f}}{G_{m}}-1}{\frac{G_{f}}{G_{m}}+\xi}\right]$
$G_{m}, G f=$ Inplase Shear modulus of matrix and fiter resp.
重
$E_{m}, E_{f}=$ Youngs modulus of matrix and foter resp.
$\begin{aligned} & \\ & V_{f}, \begin{array}{l}\text { resp. } \\ \text { Volume fractions of fore amod matosx } \\ \\ \text { resp. }\end{array}\end{aligned}$
20) composite is a new material which is produced by combining two or more materials by process (i)

Composite is material fiber is embeded in a matrix material.

- It is made up of two or more materials
- Matrix - material one
- Reinforcement - Material two
- Matrix binds the other Constituents
- Reinforcement improves the strength and stratus of the material, protects from the environment

25 Field whee appiteatrons of Composites
marine field

- Fishing boats
- Lire boats
- Anti-marine ships
- Rescue ships
- Hover crafts
- Hulls
- Decks
-pr
- Ru

Dr. T. JAMÁCHANDRA PRASAD

 R GM College of Engr. NANDYAL-S18501, Kurnool (Ot), A.P.

Electronic tiela

- Scotches
- optical fibers
- Led Jv's
- Mother boards
- Circuit boards
- wires
- Sinks

Aerospace
Gliders
Helicopter blades
Transmission Shafts
Elevators
spoilers
Rocket boosters
Nozzles
Antenna covers Fuselage, Doors, seats Landing gears

Auto mobile

- leaf springs
- Bumpers
- Body components
- Chassis Components
- Engine components
- Engine bonnet
- Mud wings
- Lamp heads
- cabins
- Instrument panels
- window frames.

3. (a) Longitudinal modulus (E,)

70 determine this the
 following assumptions are made
(a) Strain experienced by the composite is equal to fiber and matrix

$$
\epsilon_{c}=\epsilon_{f}=\epsilon_{m}
$$

(b) Load appited on the composite is shared by Fiber and matrix

$$
P_{c}=P_{m}+P_{f}
$$

(1) Transverse modulus (E_{2})

Assumptions
((1) $\sigma_{c}=\sigma_{f}=\sigma_{m}$
(B) $t_{c}=t f+t_{m}$

(c)

$$
\begin{gather*}
S_{c}=S_{f}+S_{m}-3 \tag{2}\\
\epsilon=\frac{s}{t}=\frac{\Delta c}{L} \\
S=\epsilon t-4
\end{gather*}
$$

\therefore egn-(B) is modified at

$$
\begin{aligned}
& \epsilon_{c} t_{c}=\epsilon_{f} t_{f}+\epsilon_{m} t_{m} \\
& \epsilon_{c}=E f\left(\frac{t_{f}}{t_{c}}\right)+E
\end{aligned}
$$

 RGM College of Engs NANDYAL-S18 501, Kurnool (Dt), A.P.

$$
\begin{align*}
& \epsilon_{c} \not \&_{c} A_{c}=\epsilon / f E_{f} A_{f}+\Varangle_{m_{A m}}^{E_{m}} \cdot \sigma=\frac{p}{A} \\
& P=\sigma A \\
& E_{c}=E_{\left.f\left(\frac{A f}{A c}\right)+E_{m}\left(\frac{A m}{A c}\right) \quad \begin{array}{|lc}
\end{array} \quad \begin{array}{l}
\quad=E E
\end{array}\right]=E_{m}} \\
& E_{c}=E f V_{f}+E_{m} V_{m} \\
& \because V_{f}=\frac{A_{f}}{A_{c}} ; V_{m}=\frac{A_{m}}{A_{c}} \\
& V_{m}+V_{f=1} \\
& \because V_{m}=1-V_{f} \\
& E_{c}=E_{f} V_{f}+E_{m}\left(1-V_{f}\right) \text {. } \\
& E_{1}=E_{f} V_{f}+E_{m}\left(1-V_{f}\right): E_{c}=E_{1} \tag{4}
\end{align*}
$$

$$
\begin{align*}
& \frac{\theta / c}{E_{c}}=\frac{\sigma_{f}}{E_{f}} V_{f}+\frac{\sigma_{m}}{E_{m}} V_{m} \quad \because E=\frac{\sigma}{E} \\
& \frac{1}{E_{c}}=\frac{V_{f}}{E_{f}}+\frac{V_{m}}{E_{m}} \\
& E_{c}=\frac{E_{f} E_{m}}{V_{f} E_{m}+V_{m} E_{f}} \\
& E_{2}=\left[\frac{E_{f} E_{m}}{V_{f} E_{m}+V_{m} E_{f}}\right] \quad \because E_{c}=E_{2}
\end{align*}
$$

(c) In-plane shear modulus (G12)

(a) $\tau_{c}=\tau f=\tau_{m}$

$$
G=\frac{\tau}{\gamma}
$$

$$
\gamma=\frac{S}{t}
$$

S_{c}, S_{f}, S_{m} are the deformations in the composites filier, \& matrix sesp.

$$
\begin{gather*}
S_{c}=S_{f}+S_{m} \\
\delta_{c} t_{c}=\gamma_{f} t_{f}+\gamma_{m} t_{m} \tag{2}\\
G_{12}=\frac{\tau_{c}}{\gamma_{c}} \Rightarrow \delta_{c}=\frac{\tau_{c}}{G_{12}} \tag{3}\\
\gamma_{f}=\frac{\tau_{f}}{G_{f}} \gamma_{m}=\frac{\tau_{m}}{G_{m}} \tag{8}
\end{gather*}
$$

Sub. eqn (3), (4).(5) in egn (2)

$$
\begin{aligned}
& \frac{Z c^{B C}}{G_{12}} t c=\frac{5 f}{G_{f}} t f+\frac{\pi \hat{m}}{G_{m}} \quad \frac{f^{\prime}}{}
\end{aligned}
$$

$$
\frac{1}{G_{12}}=\frac{V_{f}}{G_{f}}+\frac{V_{m}}{G_{m}}
$$

where $\because V_{f}=\frac{t_{f}}{t_{c}}$
Where

$$
\begin{align*}
& V_{f}=\text { Vol fraction of town } \because V_{m}=\frac{t m}{t_{c}} \\
& V_{m}=\text { vol. fraction of mationa, } \tag{4}
\end{align*}
$$

(1) major porsearis vatron $\left(V_{12}\right)$

$$
V_{12}=V_{f} V_{f}+V_{m} V_{m}
$$

Where
$v_{f}=$ porssoris vatio of fionew
$v_{m}=$ porsseris ratio of mettera
$V_{m}, V_{f}=V_{o l}$. fractrons of matrix \& fitiour
4@ resp,
Resintramsfer mould (RTm)

- RTM is an intermediate volume moulding procus for producing composites
- In RTm resson injected under pressuse mould coutty.
- This process produces parts with two firnshed surifaces,
steps in RTM
$3 N$
Dr K. THIRUPATHI REDDY

Advantages

- Low skilled labour is required
- Low tooling cost
- Low volatile emission
- Required design tailorability
- Good surface finish
- Very large complex shapes can be made
- less maternal wastage
- Gore dimensional tolerances
- Fast production,

Disadvantages

- less emission due to closed mould
- preforms are labour intensive
- Waste may be herb
- Chances of motsture entrapment
- Distortion of fiber during injection of x soon due to fotzer wash
- Control of rests uniformity is difficult.
Applications
- Complex structures can be produced
- Automotive body parts, big containers, bats tubs, helmets etc
- vetride panels
- Boat hulls,
- Wind turbine blades
- Aerospace parts.

4 types of matrix matricels

1) polysuers
2) metals
3) Ceramiey
4) Coubon
polymers

Pmes MMC's CMC's cCmés
$\left.\begin{array}{c}\text { Pmis } \\ \left(25^{\circ} \mathrm{C}\right) \\ \mathrm{c}\end{array}\right)\left(700^{\circ} \mathrm{C}\right)\left(2500^{\circ} \mathrm{C}\right)\left(3000^{\circ} \mathrm{C}\right)$

Thermoset

- Two diftesent matriateriels ase used im polymer mation

Compositice (Pme's)
Thermosets
Ex: - Epoxy
Thermoplastices

- polyester
polyethylene (PE)
- vinglester
metals
Cermets, Tic, TicN,
cemented carbides

Ceramics
Ceramics

$$
\mathrm{Al}_{2} \mathrm{O} 3, \mathrm{Sic}
$$

APplicatran: 7001 meterich,
Carbon Casbon, graptite
Application: Brance pads
(D) Silicon Carbide fiber (Dic)

- Hosh strungta at elevated temp.
- Hrsh oaidatron resistance
- Hosh mioro-structusel stabrity
- Hish stiftuess
- Hish tensole strungts
- Low thermel expansion
- Low weisht

Boren - Carbide fiber

- Extreme hardney
- Difticenlt to Sonder to trish zelatrive densities
- Good chemical sesistance
- Good nuelear propentres
- It's elastre madulus is close to diamond,

Given Data

$$
\begin{array}{l|l|l}
E_{1}=40 \mathrm{GPa} & G_{12}=4.41 \mathrm{GPa} & V_{12}=0.26 \\
E_{2}=9 \mathrm{GPa} & G_{23}=3.8 \mathrm{GPa} & v_{23}=0.21 \\
E_{3}=9 \mathrm{GPa} & G_{13}=3.8 G \mathrm{Ga} & \nu_{13}=0.21 \\
\text { Find } & &
\end{array}
$$

(a) Compliance matrix [S]
(b) Stifinses matrix [c]

Given materiel
or thotrapic matemal
So):- Using Belts Reciprocel low

$$
\begin{aligned}
& \frac{V_{i j}}{E_{i}}=\frac{V_{j i}}{E_{j}}
\end{aligned}
$$

$$
\begin{align*}
\frac{V_{31}}{E_{3}} & =\frac{V_{13}}{E_{1}} \\
V_{31} & =\frac{E_{3}}{E_{1}} V_{13}=\frac{9}{40} \times 0.21 \\
V V_{31} & =0.047 \\
\frac{V_{23}}{E_{2}} & =\frac{V_{32}}{E_{3}} \\
V_{32} & =\frac{E_{3}}{E_{2}} V_{23}=\frac{9}{9} \times 0.21 \\
& -V_{32}=0.21 \tag{4}
\end{align*}
$$

$$
\{\epsilon\}=[s]\{\sigma\}
$$

where $[s]=$ compliance $\operatorname{motin} x$.

$$
S_{11}=\frac{1}{E_{1}}=\frac{1}{40 \times 10^{9}}=2.5 \times 10^{-11} \mathrm{pa}^{-1}
$$

$$
\begin{aligned}
& S_{12}=\frac{-W_{21}}{E_{2}}=-\frac{0.0555}{9 \times 10^{9}}=-6.5 \times 10^{-12} \mathrm{~Pa}^{-1} \\
& S_{12}=S_{21}=-V_{21}=6 . T \times 10^{-12} \mathrm{~Pa}^{-1}
\end{aligned}
$$

$$
S_{13}=-\frac{v_{31}}{E_{3}}=\frac{-0.047}{9 \times 109}=-5.22 \times 10^{12} \mathrm{pan}^{-1}
$$

$$
S_{22}=\frac{1}{E_{2}}=\frac{\frac{E_{3}}{9 \times 10^{9}}=1.11 \times 10^{-10} \mathrm{~Pa}^{-1} 1 .{ }^{-1}=1}{}
$$

$$
\begin{aligned}
& \text { Where } \left.[s]=\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\epsilon_{3} \\
\gamma_{23} \\
\gamma_{13} \\
\gamma_{12}
\end{array}\right\}=\left[\begin{array}{ccccc}
s_{19} & s_{12} & s_{13} & 0 & 0 \\
s_{21} & s_{22} & s_{23} & 0 & 0 \\
s_{31} & s_{32} & s_{33} & 0 & 0 \\
0 & 0 & 0 & s_{44} & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 & s_{55} \\
0 & 0 & 0 & 0 & 0 \\
066
\end{array}\right]\left\{\begin{array}{l}
\sigma 1 \\
\sigma_{2} \\
\sigma_{3} \\
\tau_{2} \\
\tau
\end{array}\right]
\end{aligned}
$$

$$
S_{12}=S_{21}=-\frac{V_{21}}{E_{2}}=6.5 \times 10^{-12} \mathrm{~Pa}^{-1}
$$

$$
S_{13}=S_{31}=\frac{V_{31}}{E_{3}}=-5.22 \times 10^{-12} \mathrm{pa}^{-1}
$$

$$
\begin{align*}
& 33=\frac{1}{E_{3}}=\frac{1}{9 \times 109}=1.11 \times 10^{-10} \mathrm{par} \\
& S_{44}=\frac{1}{G_{23}}=\frac{1}{3.8 \times 109}=2.63 \times 10^{-10} \mathrm{~Pa}^{-1} \\
& S_{55}=\frac{1}{G_{13}}=\frac{1}{3.8 \times 10^{3}}=2.63 \times 10^{-10} \mathrm{pal}^{-1} \\
& \delta_{66}=\frac{1}{G_{12}}=\frac{1}{4.41 \times 10^{9}}=2.26 \times 10^{10} \mathrm{~Pa}^{-1} 7 \\
& {[S]=\left[\begin{array}{cccccc}
2.5 \times 10^{-11} & -6.5 \times 10^{-12} & -5.22 \times 10^{-12} & 0 & 0 & 0 \\
-6.5 \times 10^{-12} & 1.11 \times 10^{-10} & -2.33 \times 10^{-11} & 0 & 0 & 0 \\
-5.25 \times 10^{-12} & -2.33 \times 10^{-11} & 1.11 \times 10^{-10} & 0 & 0 & 0 \\
0 & 0 & 0 & 2.63 \times 10^{-10} & 0 & 0 \\
0 & 0 & 0 & 0 & 2.63 \times 10^{-10} & 0 \\
0 & 0 & 0 & 0 & 0 & 2.26 \times 10^{-10}
\end{array}\right]}
\end{align*}
$$

WKT
Stiftuess matrix is given by

$$
\begin{aligned}
& \{\sigma\}=[Q]\{\epsilon\} \text { or }\{\sigma\}=[c]\{\in\} \\
& {[C]=\left[\begin{array}{cccccc}
c_{11} & c_{12} & c_{13} & 0 & 0 & 0 \\
c_{21} & c_{22} & c_{23} & 0 & 0 & 0 \\
c_{31} & c_{32} & c_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & c_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & c_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & c_{66}
\end{array}\right]} \\
& C_{11}=\frac{E_{1}}{1-V_{12} 0_{21}}=\frac{40 \times 109}{(1-0.26 \times 0.0585)} \mathrm{Pa}=4.061 \times 10 \mathrm{~Pa} \\
& C_{22}=\frac{E_{2}}{}=9 \times 109
\end{aligned}
$$

 PRINCIPAL
R G M College of Engg. NANDYAL-518501, Kurnool (Dt), A.P.

$$
\begin{aligned}
& C_{33}=\frac{E_{3}}{1-V_{13} V_{31}}=\frac{9 \times 101}{(1-021 \times 0.047)} \mathrm{Pa}=9.089 \times 10^{9} \mathrm{~Pa} \\
& c_{44}=G_{23}=3.8 \times 109 \mathrm{~Pa}=3.8 \mathrm{GPa} \\
& C 55=G_{13}=3.8 \mathrm{GPa} \\
& C_{66}=G_{12}=4.41 \mathrm{GPa} \\
& C_{12}=\frac{V_{12} E_{12}}{1-V_{12} V_{21}}=\frac{0.26 \times 9 \times 109}{(1-0.216 \times 0.0585)} \mathrm{Pa}=2.37 \times 10^{9}+ \\
& =2.377 \mathrm{GPa} \\
& C_{13}=\frac{\nu_{13} E_{3}}{1-\nu_{13} V_{31}}=\frac{0.21 \times 9 \times 109}{(1-0.21 \times 0.047)} \mathrm{Pa}=1.90 \times 10^{9} \mathrm{~Pa} \\
& C_{13}=1.90 \mathrm{GPa} \quad \because C_{13}=C_{31} \\
& C_{21}=\frac{V_{21} E_{1}}{1-V_{21} V_{12}}=C_{12}=2.37 \times 10^{9} \mathrm{~Pa} \\
& C_{23}=\frac{V_{23} E_{3}}{1-V_{23} V_{32}}=\frac{0.21 \times 9 \times 109}{1-0.21 \times 0.21} \mathrm{~Pa}=1.977 \times 10 \\
& C_{23}=1.97 \mathrm{GPa} \\
& C_{23}=C_{32} \quad \because C_{i j}=C_{j i} \\
& {[c]=\left[\begin{array}{cccccc}
40.61 & 2.37 & 1.9 & 0 & 0 & 0 \\
2.37 & 9.13 & 1.977 & 0 & 0 & 0 \\
1.89 & 1.977 & 9.089 & 0 & 0 & 0 \\
0 & 0 & 0 & 3.8 & 0 & 0 \\
0 & 0 & 0 & 0 & 3.8 & 0 \\
0 & 0 & 0 & 0 & 0 & 4.41
\end{array}\right]}
\end{aligned}
$$

$$
\begin{align*}
& \theta=3 i \\
& E_{1}=204 \mathrm{GPa} \\
& E_{2}=18.5 \mathrm{GPa} \\
& V_{12}=0.23 \tag{2}\\
& G_{12}=5.59 \mathrm{GPa}
\end{align*}
$$

$$
\begin{aligned}
& S_{22}=\frac{1}{E_{1}}=\frac{1}{204 \times 109}=4.901 \times 10^{-12} P_{0}^{-1} \\
& S_{12}=\frac{-12 \times 109}{E_{1}}=-\frac{0.23}{204 \times 109}=-1.127 \times 10^{-11} \\
& S_{66}=\frac{1}{G_{12}}=\frac{1}{5.59 \times 10^{-9}}=1.78 \times 10^{-10}
\end{aligned}
$$

WRT

$$
\begin{aligned}
& \left\{\begin{array}{c}
\epsilon_{x} \\
\epsilon_{y} \\
\gamma_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
s_{x x} & s_{x y} & s_{x s} \\
s_{y x} & s_{y y} & s_{y s} \\
s_{y x} & s_{s y} & s_{s s}
\end{array}\right]\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y y} \\
\tau_{x y}
\end{array}\right\} \\
& ==\cos 30^{\circ}=
\end{aligned}
$$

$$
c=\cos \theta=\cos 30^{\circ}=
$$

$$
S=\sin \theta=\sin 30^{\circ}
$$

Reduced transformed compliance mator
where

$$
\begin{aligned}
s_{y y}=s^{4} s_{11} & +c^{4} s_{22}+2 c^{2} s^{2} s_{12}+c^{2} s^{2} s 66 \\
=(0.5) 4 & \times 4.901 \times 10^{-12}+(0.566)^{4} \times 5.405 \times 10^{-11} \\
& +2 \times(0.866)^{2} \times(0.5)^{2}\left(-1.127 \times 10^{-12}\right. \\
& +(0.866)^{2} \times(0.5)^{2} \times 1.288 \times 10^{15}
\end{aligned}
$$

MEADOAANDRA PRASAD PRINCIPAL
RGM College of Engs. \& Tech.
(Aut) NANDYAL-S18501, Kurnool (Dt), A.P.

$$
\begin{aligned}
& =c^{4} s_{11}+s^{4} s_{22}+2 c^{2} s^{2} s_{12}+c^{2} s^{2} s_{66} \\
& S_{x x}=(0.866)^{4} \times 4.901 \times 10^{-12}+(0.5)^{4} \times 5.405 \times 10^{-11} \\
& +2 \times(0.866)^{2} \times(0.5)^{2} \times\left(-1.127 \times 10^{-12}\right)+(0.866)^{2} \times(0.5) \\
& \times 1.788 \times 10^{-10} \\
& S_{x x}=\frac{1102010}{110-11} \mathrm{~Pa}^{-1} \\
& s_{x y}=c^{2} s^{2} s_{11}+c^{2} s^{2} s_{22}+\left(c^{4}+s^{4}\right) s_{12}-c^{2} s^{2} s_{66} \\
& =(0.866)^{2} \times(0.5)^{2} \times 4.901 \times 10^{-12}+(0.866)^{2} \times(0.5)^{2} \times 5.1005 \times \\
& +\left((0.866)^{4}+(0.5)^{4}\right) \times-1.127 \times 10^{-12}-(0.866)^{2} \times(0.5)^{2} \times 1.78 \\
& S_{x y}=-2.317 \times 10^{-11} \mathrm{~Pa}^{-1}=-2.317 \times 10^{-11} \mathrm{PaO}
\end{aligned}
$$

$$
\begin{aligned}
& S_{S S}=4 c^{2} s^{2} S_{11}+4 c^{2} s^{2} s_{22}-8 c^{2} s^{2} s_{12}+\left(c^{2}-s^{2}\right)^{2} S_{66} \\
& =4 \times(0.866)^{2} \times(0.5)^{2} \times 4.901 \times 10^{-12}+4 \times(0.866)^{2} \times(0.5)^{2} \times 5.405 \times 10^{-11} \\
& -8 \times(0.866)^{2} \times(0.5)^{2} \times\left(-1.127 \times 10^{-12}\right) \\
& +\left[(0.866)^{2}-(0-5)^{2}\right]^{2} \times 1.785 \times 10^{-10} \\
& S_{S S}=2 \times{ }^{4} \times 10^{10} \mathrm{~Pa} \\
& s_{x s}=2 c 3 s s_{11}-2 \operatorname{cs}^{3} s_{22}+2\left(\operatorname{cs}^{3}-c^{3} s\right) s_{12}+\left(s^{3}-c^{3} s\right) \\
& =2 \times(0.866)^{3} \times 0.5 \times 4.901 \times 10^{-12}-2 \times 0.866 \times(0.5)^{3} \times 5.405 \times 10^{-1)} \\
& +2\left(0.866 \times(0.5)^{3}-(0.866)^{3} \times 0.5\right) \times\left(-1.127 \times 10^{-12}\right) \\
& +\left(0.866 \times 0.5^{3}-(0.866)^{3} \times 0.5\right) \times 1.788 \times 10^{-10} \\
& S_{x_{s}}=-6.6 \times 10^{-11} \mathrm{~Pa} \\
& s y s=2 c s^{3} s_{11}-2 c^{3} s s_{22}+2\left(c^{3} s-s^{3}\right) s_{12}+\left(c^{3} s-c s^{3}\right) s_{6} \\
& =2 \times 0.566 \times(0.5)^{3} \times 4.901 \times\left(8^{-12}-2 \times(0.866)^{3} \times 0.5 \times 5-4\right. \\
& +2\left((0.866)^{3} \times 0.5-0.866 \times(0.5)^{3}\right) \times 1.788 \times 10^{-10} \\
& S_{y s}=436 \times 10^{-1} \mathrm{~Pa} \\
& \left\{\begin{array}{c}
\epsilon_{x} \\
\epsilon_{y} \\
\delta_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
\frac{1}{E_{x}} & \frac{\nabla_{x y}}{E_{y}} & \frac{\eta_{x s}}{G_{x y}} \\
\frac{-\nabla_{y x}}{E_{x}} & \frac{1}{E_{y}} & \frac{\eta_{s y}}{\sigma_{x y}} \\
\frac{\eta_{s x}}{E_{x x}} & \frac{\eta_{y s}}{E_{y}} & \frac{1}{G_{x y}}
\end{array}\right]\left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}-(1)
\end{aligned}
$$

let us equate (1) \& (2)
$\operatorname{eqn}(1)=e q_{n}$ (2) in terms of Comptiance matrix

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
s_{x x} & S_{x y} & S_{x s} \\
S_{y x} & s_{y y} & S_{y s} \\
S_{s x} & S_{s y} & S_{s s}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{E_{x}} & \frac{-V_{y x}}{E_{y}} & \frac{\eta_{x s}}{G_{x y}} \\
\frac{-V_{x y}}{E_{x}} & \frac{1}{E_{y}} & \frac{\eta_{s y}}{G_{x y}} \\
\frac{\eta_{s x}}{E_{x}} & \frac{\eta_{y s}}{E_{y}} & \frac{1}{G_{x y}}
\end{array}\right]} \\
& S_{x x}=\frac{1}{E_{x}} \Rightarrow E_{x}=\frac{1}{S_{x x}}=\frac{1}{7.27 \times 10^{-11}}=1.37 \times 10^{10} \mathrm{~Pa} \\
& \text { syy }=\frac{1}{E_{y}} \Rightarrow E_{y}=\frac{1}{s_{y y}}=\frac{1}{6.38 \times 10^{-11}}=1.56 \times 10^{10} \mathrm{~Pa} \\
& S_{S S}=\frac{1}{G_{x y}} \Rightarrow G_{x y}=\frac{1}{S_{S S}}=\frac{1}{4.52 \times 10^{-10}}=2.22 \times 10^{9 \mathrm{~Pa}} \\
& S_{x y}=\frac{-V_{y x}}{E_{y}} \\
& \nabla_{y x}=-E_{y} \times S_{x y} \\
& =-\left(1.56 \times 10^{10}\right) \times-2.317 \times 10^{-11} \\
& \nu_{y x}=0.3614 \\
& r: \nu_{i j}=\nu_{j i} \\
& \nabla_{y x}=V_{x y}=0.3614 \\
& s_{x s}=\frac{\eta_{x s}}{G_{x y}} \Rightarrow \eta_{x s}=s_{x s} \times G_{x y} \\
& =-8.59 \times 10^{-11} \times 2.22 \times 10^{9} \\
& \eta_{\text {xs }}=-0.188 \\
& \because \eta_{i j}=\eta_{j} \\
& \eta s x=-0.188
\end{aligned}
$$

$$
\begin{aligned}
s y s & =\frac{\eta s y}{G x i} \Rightarrow \eta s y=G x y \times S y s \\
\eta & \eta y=2.22 \times 10^{9} \times 4.33 \times 10^{-11} \\
\eta s y & =0.095 \\
\eta s y & =\eta y s=0.095
\end{aligned}
$$

RGM COLLEGE OF ENGINEERING \& TECHNOLOGY (AUTONOMOUS) 15 th November-2018
 IV B.Tech I Semester (R15) End Examinations (Regular) MECHANICS OF COMPOSITE MATERIALS
 MECH

Time: 3 Hrs
Total Marks: 70

Note 1:Answer Question No. 1 (Compulsory) and 4 from the remaining
2:All Questions Carry Equal Marks
Xia What is major Poisson's ratio?
b What are the typical mechanical properties of carbon fiber?
c What are the typical mechanical properties of ceramic matrix composites?
d What is maximum stress failure theory?
e List the factors to be considered while selecting the most efficient manufacturing process for composites.
f Differentiate between a lamina and isotropic homogeneous material.
g List two physical properties that can be estimated using rule of mixtures.
The Engineering constants for an orthotropic material are found to be
$\mathrm{E}_{1}=40 \mathrm{Gpa}, \mathrm{E}_{2}=9 \mathrm{Gpa}, \quad \mathrm{E}_{3}=9 \mathrm{Gpa}, v_{12}=0.26, \mathrm{v}_{23}=0.21, v_{13}=0.21$
$\mathrm{G}_{12}=4.41 \mathrm{Gpa}, \quad \mathrm{G}_{23}=3.8 \mathrm{Gpa}, \mathrm{G}_{13}=3.8 \mathrm{Gpa}$. Find the stiffness matrix $[\mathrm{C}]$ and compliance matrix [S] for the above orthotropic material.
3 Obtain an expression for $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{~V}_{12}$ and G_{12} in terms of material properties with respect to principal material directions using strength of material approach. (14)
4 a) What is reinforcement? Explain the purpose of reinforcements?
b) Describe different types of reinforcements used in polymer composites.

5 What are the two types of filament winding? Explain them with the help of neat: sketches. Mention their applications.
${ }_{6}^{6}$ Give the complete classification of composite materials? Briefly explain each type of composites citing one example in each category.
An off axis laminais loaded as shown. Determine $\sigma_{x}=-\sigma_{y}=F_{0}$ at failure using the Tsai-Hill and max. Stress failure criteria for a material of the following properties.

(14)

[^18]RGMCET (Nandyal) - Autonomous IV B.Tech I-Sem R-15, End Exams (Reg.)

Mechanics of Composite Materials
12.
code: A0338158R1118; (MECH.) Total Marks: 70
The major poisson's ratio for local plane ' 12 ' is found by taking negative lated strain in melted plane '12' and dividing if by the axis strain in the direction of normal to the local plane' 12^{\prime} for an axially loaded member.

$$
\because \nabla_{12}=\frac{E_{1}}{E_{2}}
$$

$U_{12}=\frac{E_{T}}{E_{L}}$ where $U_{12}=$ Major porsson's ratio

$$
0
$$

\qquad
\qquad
\square
$v_{21}=$ Minor poisson's ratio
$E_{1}=$ Young's modulus in the longitudina direction
$E_{2}=$ young's modulus in lie
(av) transverse direction.

$$
v_{12}=v_{f}+v_{m} V_{m}
$$

where $V_{f}=v o l$ fraction of fiber
$V_{m}=$ Volifraction of matrix.
$v_{f}=$ Poission ratio of fiber
$\bar{v}_{m}=$ poisson ratio of triatrix
$1 b$.
Mechanical properties of Carbon fiber
$\left.\begin{array}{l}\text { Hish strengin to wot. ratio, Rigidity, corrosion } \\ \text { resistance, Hiss Electrical Conductivity, } \\ \text { Fatigue Resistance, Good tensile strength }\end{array}\right\}$
how comet of thermal exp.
High thermal conductivity.
tush strictures \& fish wear vies

IC Mechanical froperties of CMC
(a) Hish strength to wt. ratio
(b) High toughness
(c) Irish stifles
(d) Hosh strength elevated temps.
(c) High thermal shock resistance
(1) Low density
(9) Hrsh fatigue life.
td. Max. stress failure theory:
It states that failure will occur if any one of The stresses induced by the applied loads in The principal material axis exceed the corvespounding allowable stress.

Therefore, to avoid the failure the following inequalities must be satisfied.

$$
\begin{array}{l|l}
\sigma_{1} \alpha\left(\sigma_{1}\right)_{c}^{4} & \sigma_{1} \alpha\left(\sigma_{1}\right)^{4} t \\
\sigma_{2}<\left(\sigma_{2}\right)_{c}^{4} & \sigma_{2}<\left(\sigma_{2}\right)^{4} \\
\tau_{12} \alpha\left(\tau_{12}\right)_{c}^{4} & \tau_{12} \alpha\left(\sigma_{12}\right)^{4} t
\end{array}
$$

$\sigma_{1}, \sigma_{2}, \tau_{12}=$ stresses produced by the applied loads

$$
\left(\sigma_{1}\right)^{4}:\left(\sigma_{2}\right)^{4}\left(\tau_{12}\right)^{4}=\text { correspondin }
$$

Ie (a) strength to weisht ratio
(b) Density of The Composite
(c) voids needs to beless
(d) Surface finish on both sides
(e) Hish corrosion resistance
(f) Hish electrical \& thermal conduatoity
(9) Selection of sp.fiber \& matrix
Lamina: It's plane surface area in which fiber is arranged in uni-direction held with matrix. Material whose trickiness is 0.125 mm Ex:

Lamina-

Isotropic Homogeneous material:

- characterized by infinite no. of planes of mil
- propestres are same in all directions
- 2 elastic constants are req.
- proportres are directionally dependent.J

$$
\left.\left\{\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\tau_{23} \\
\tau_{31} \\
\tau_{12}
\end{array}\right\}=\left[\begin{array}{ccccccc}
c_{11} & c_{12} & c_{12} & 0 & 0 & 0 \\
c_{12} & c_{11} & c_{12} & 0 & 0 & 0 \\
c_{12} & c_{12} & c_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & \left(\frac{c_{11}-c_{12}}{2}\right) & 0 & 0 \\
0 & 0 & 0 & 0 & \left(\frac{c_{11}-c_{12}}{2}\right. & 0 \\
0 & 0 & 0 & 0 & 0 & c_{11}-c_{22}
\end{array}\right\} \begin{array}{l}
\epsilon_{41} \\
\epsilon_{22} \\
\epsilon_{33} \\
\theta_{23} \\
r_{31} \\
\gamma_{12}
\end{array}\right\}
$$

19. (a) volume fraction

$$
\begin{align*}
& V_{f}=\frac{V_{f}}{V_{c}} \\
& V_{m}=\frac{v_{m}}{V_{c}} \\
& V_{f}+V_{m}=1
\end{align*}
$$

(b) weisht fraction

$$
\begin{aligned}
& W_{f}=\frac{W_{f}}{W_{c}} \\
& W_{m}=\frac{w_{m}}{w_{c}} \\
& W_{f}+W_{m}=1
\end{aligned}
$$

(d) Void fraction

$$
\begin{equation*}
V_{V}=\frac{T_{T}-P_{e}}{Y_{T}} \tag{1}
\end{equation*}
$$

2. Given Data

$$
\begin{aligned}
& E_{1}=40 \mathrm{GPa} \\
& E_{2}=9 \mathrm{GPa} \\
& E_{3}=9 \mathrm{GPa} \\
& V_{12}=0.26 \\
& V_{23}=0.21 \\
& V_{13}=0.21
\end{aligned}
$$

$$
\begin{aligned}
G_{12} & =4.41 \mathrm{GPa} \\
G_{23} & =3.8 G \mathrm{~Pa} \\
G_{13} & =3.8 \mathrm{GPa}
\end{aligned}
$$

$$
\{\epsilon\}=[s]\{\sigma\}
$$

where $[s]=$ compliance matrix

$$
\begin{align*}
& \left\{\begin{array}{l}
\epsilon_{1} \\
\epsilon_{2} \\
\epsilon_{3} \\
\nu_{23} \\
\gamma_{13} \\
\gamma_{12}
\end{array}\right\}=\left[\begin{array}{ccccc}
s_{11} & s_{12} & s_{13} & 0 & 0 \\
s_{21} & s_{22} & s_{23} & 0 & 0 \\
s_{31} & s_{32} & s_{33} & 0 & 0 \\
0 & 0 & 0 & s_{44} & 0 \\
0 \\
0 & 0 & 0 & 0 & s_{55} \\
0 & 0 & 0 & 0 & 0 \\
s_{666}
\end{array}\right]\left\{\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\tau_{23} \\
\tau_{13} \\
\tau_{12}
\end{array}\right\} \\
& s_{11}=\frac{1}{E_{1}} ; S_{12}=-\frac{\nu_{21}}{E_{2}} ; s_{13}=\frac{-\nu_{31}}{E_{3}} \\
& s_{21}=-\frac{\nu_{12}}{E_{1}} ; S_{22}=\frac{1}{E_{2}} j s_{23}=-\frac{\nu_{32}}{E_{3}}-(3 M
\end{align*}
$$

where

$$
\begin{aligned}
& S_{11}=\frac{1}{E_{1}}=\frac{1}{40 \times 10^{9}}=2.5 \times 10^{-11} \mathrm{~Pa} \\
& S_{12}=\frac{-V_{21}}{E_{2}}=\frac{-0.0585}{9 \times 109}=6.5 \times 10^{-12} \mathrm{~Pa} \\
& S_{13}=\frac{-1}{S_{31}}=\frac{-0.047}{9 \times 109}=5.32 \times 10^{-12} \mathrm{~Pa}
\end{aligned}
$$

$$
\begin{aligned}
& S_{21}=-\frac{V_{12}}{E_{1}}=-\frac{0.26}{40 \times 10^{9}}=-6.5 \times 10^{-12} \mathrm{~Pa}^{-1} . \\
& S_{22}=\frac{1}{E_{2}}=\frac{1}{9 \times 10^{9}}=1.11 \times 10^{-10} \mathrm{~Pa}^{-1} \\
& S_{23}=\frac{-V_{32}}{E_{3}}=\frac{-0.21}{9 \times 10^{9}}=-2.33 \times 10^{-11} \mathrm{Ba} \\
& S_{31}=-\frac{V_{13}}{E_{1}}=\frac{-0.21}{40 \times 10^{9}}=-5.25 \times 10^{-12} \mathrm{RO} \\
& S_{32}=\frac{-V_{23}}{E_{2}}=\frac{-0.21}{9 \times 10^{9}}=-2.33 \times 10^{-11} \mathrm{~Pa}^{-1} \\
& S_{33}=\frac{1}{E_{3}}=\frac{1}{9 \times 109}=1.11 \times 10^{-10} \mathrm{~Pa}^{-1} \\
& \text { - } S_{44}=\frac{1}{G_{23}}=\frac{1}{3-8 \times 103} \div 2.63 \times 10^{10} \mathrm{~Pa}^{-1} \\
& S_{55}=\frac{1}{G_{13}}=\frac{1}{3-8 \times 10^{9}}=2.63 \times 10^{-10} \mathrm{~Pa} \\
& S_{66}=\frac{1}{G_{12}}=\frac{1}{4.41 \times 10^{9}}=2.26 \times 10^{-10} \mathrm{~Pa}^{5} \\
& {[s]=\left[\begin{array}{cccccc}
2.5 \times 10^{-11} & -6.5 \times 10^{-12} & -5.22 \times 10^{-12} & 0 & 0 & 0 \\
-6.5 \times 10^{-12} & 1.11 \times 10^{-10^{-12}} & -2.33 \times 10^{-11} & 0 & 0 & 0 \\
-5.25 \times 10^{-12} & -2.33 \times 10^{-11} & 1.11 \times 10^{-10} & 0 & 0 & 0 \\
0 & 0 & 0 & 2.63 \times 10^{-10} & 0 & 0 \\
0 & 0 & 0 & 0 & 2.63 \times 10^{-10} & 0 \\
0 & 0 & 0 & 0 & 0 & 2.86 \times 10^{-10}
\end{array}\right]}
\end{aligned}
$$

FromBett-Reciprocal Law

$$
\begin{aligned}
\frac{V_{12}}{E_{1}} & =\frac{V_{21}}{E_{2}} \\
V_{21} & =\frac{E_{2}}{E_{1}} V_{12} \\
& =\frac{9}{40} \times 0.26 \\
V_{21} & =0.0585
\end{aligned}
$$

$$
\left.\begin{array}{r|r}
\frac{V_{31}}{E_{3}}=\frac{V_{13}}{E_{1}} & \begin{array}{l}
\frac{V_{23}}{E_{2}}=\frac{V_{32}}{E_{3}} \\
V_{31}
\end{array}=\frac{E_{3}}{E_{1}} V_{13} \\
& =\frac{9}{40} \times 0.21
\end{array} \right\rvert\, \begin{aligned}
& V_{32}=\frac{E_{3}}{E_{2}} N_{23} \\
& =\frac{9}{9} \times 0.21 \\
& V_{31}=0.047
\end{aligned}
$$

Stiffness matrix is given by

$$
\{\sigma\}=[Q]\{\epsilon\}(\alpha)\{\sigma\}=[c]\{E\}
$$

\longrightarrow Stitluess matrix

$$
\begin{align*}
& {[C](Q)[Q]=\left[\begin{array}{cccccc}
Q_{11} & Q_{12} & Q_{13} & 0 & 0 & 0 \\
Q_{21} & Q_{22} & Q_{23} & 0 & 0 & 0 \\
Q_{31} & Q_{32} & Q_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & Q_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & Q_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & Q_{66}
\end{array}\right]} \tag{3M}\\
& Q_{11}=\frac{E_{1}}{1-V_{12} V_{21}}=\frac{40 \times 109}{(1-0.26 \times 0.0585)} P_{a}=4.061 \times 10^{10} \mathrm{~Pa} \\
& Q_{22}=\frac{E_{2}}{1-V_{12} V_{21}}=\frac{9 \times 109}{1-0.26 \times 0.0585)} \mathrm{Pa}=9.13 \times 10^{9} \mathrm{~Pa} \\
& Q_{33}=\frac{E_{3}}{1-v_{13} v_{31}}=\frac{9 \times 109}{(1-0.21 \times 0.047)} \mathrm{Pa}=9.089 \times 10 \mathrm{~Pa} \\
& Q_{44}=G_{23}=3.8 \times 10^{9} \mathrm{~Pa}=3.8 \times 10^{9} \mathrm{~Pa} \\
& Q_{55}=G_{13}=3.8 \times 10^{9} \mathrm{~Pa}=3.8 \times 10^{9} \mathrm{~Pa} \\
& Q_{66}=G_{12}=4.41 \times 10^{9} \mathrm{~Pa}=4.41 \times 10^{9} \mathrm{~Pa} \\
& Q_{12}=\frac{\nu_{12} E_{2}}{1-\nu_{12} V_{21}}=\frac{0.26 \times 9 \times 10^{9}}{(1-0.26 \times 0.0585)} P a=2.37 \times 10^{9} \mathrm{~Pa} \\
& Q_{13}=\frac{V_{13} E_{3}}{1-V_{13} V_{31}}=\frac{0.21 \times 9 \times 10^{9}}{(1-0.21 \times 0.047)} \mathrm{Pa}=1.90 \times 10^{9} P_{a} \\
& Q_{21}=\frac{\nu_{21} E_{1}}{1-\nu_{21} V_{12}}=\frac{0.0585 \times 40 \times 10^{9}}{(1-0.0585 \times 0.26)} \mathrm{Pa}=2.37 \times 8 \mathrm{Ba} \\
& Q_{23}=\frac{V_{23} E_{3}}{1-v_{0.2} v_{23}}=\frac{0.21 \times 9 \times 11}{1 .} f_{\text {Dr. T.ANACHANDRA }}^{1} \\
& \begin{array}{l}
\text { UEPA.D.FIEFEITENWAEEMUSTEMIEEE } \\
\text { PRINCIPAL }
\end{array} \\
& \begin{array}{c}
\text { PRINCIPAL } \\
\text { RGM College of Engg, } \& \text {, Tech., } \\
\text { (Autonomous) }
\end{array} \\
& \begin{array}{l}
\text { NANDYAL-518501, Kurnool (Dt), A.P. }
\end{array}
\end{align*}
$$

$$
\begin{gathered}
Q_{31}=\frac{v_{31} E_{1}}{1-v_{31} v_{13}}=\frac{0.047 \times 40 \times 10^{9} 9}{(1-0.049 \times 0.21)} \mathrm{Pa}=1.89 \times 10^{9} \mathrm{~Pa} \\
Q_{32}=\frac{v_{32} E_{2}}{1-v_{32} v_{23}}=\frac{0.21 \times 9 \times 10^{9}}{(1-0.21 \times 0.21)} \mathrm{Pa} \\
=1.977 \times 10^{9 \mathrm{~Pa}} \\
{[Q]=\left[\begin{array}{ccccc}
40061 & 2.37 & 1.90 & 0 & 0 \\
2.37 & 9.13 & 1.977 & 0 & 0 \\
1.89 & 1.9777 & 9.089 & 0 & 0 \\
0 & 0 & 3.8 & 0 & 0 \\
0 & 0 & 0 & 0 & 3.8 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 & 4.41
\end{array}\right]-4 \mathrm{MPa}} \\
0
\end{gathered}
$$

(a) Derivation for longitudinal Modulus $\left(B_{i}\right)$

When composite be applied by $A P$ a load ' P_{c} ' which is shared Lamina-1 By The fibers \&y matrix

Mathematically, hawing

$$
P_{c}=P_{f}+P_{m}-(1)
$$

$P_{c}, P f, P_{m}$ arch loads acting on Com Strain experienced by the fibers \& matrix are equal M thematically

$$
\epsilon_{c}=\epsilon_{f}=\epsilon_{m}
$$

where
$\epsilon_{c}, \epsilon_{f}, \epsilon_{m}=$ are the strains acting on 1 lh composite, fiber and matrix resp.

WK

$$
\sigma_{c} A_{c}=\sigma_{f} A f+\sigma_{m} A_{m}
$$

$$
E_{c} E_{c} A_{c}=E_{f} \epsilon_{f} A f+E_{m} \epsilon_{m} A_{m}
$$

$$
\begin{aligned}
& \because P=\Gamma A \\
& \because A m
\end{aligned}
$$

$$
\because \sigma=E \epsilon
$$

$$
E_{c}=E_{f}\left[\frac{\epsilon_{f} A f f_{f}}{\epsilon_{C} A_{c}}\right]+E_{m}\left[\frac{\epsilon_{h} A_{m}}{E_{e} A_{c}}\right]
$$

$$
P_{c}=P f+P_{m}
$$

$$
E_{c}=E \frac{f A_{f}}{A_{c}}+E_{m}\left(\frac{A_{m}}{A_{c}}\right)
$$

$$
\because \epsilon_{c}=m=\epsilon_{f}
$$

$$
=E_{f} V_{f}+E_{m} V_{m}
$$

$$
\begin{gathered}
E_{c}=E_{f} V_{f}+E_{m} V_{m} \\
E_{1}=E_{c}=\sum_{i}^{n} E_{i} V_{i}
\end{gathered}
$$

$$
W_{f}=\frac{V_{f}}{V_{0}}=\frac{A f}{A 0}
$$

(b) Determination of transverse modulus $\left(B_{2}\right)$
wkt

$$
t_{c}=t_{f}+t_{m}-(1)
$$

Where
$t_{c}=$ thickness of the composite
$t_{f}=$ thickness of the fiber
$t_{m}=$ Thickness of the motirix
When force is applied along the tranoverse divection a bittle Considevation wrll shos that elongation in The composite is equal to algetraic sum fiber \&matrox

$$
\begin{equation*}
\text { Mathumatically, } S_{e}=S_{t}+S_{m} \tag{2}
\end{equation*}
$$

Ribers and matrix experience equal stress, mathemath

$$
\begin{align*}
\sigma_{c}=\sigma_{f} & =\sigma_{m}-(3) \tag{3}\\
\omega & =\frac{\delta}{t}=\frac{\Delta L}{L} \\
s & =\epsilon t-4
\end{align*}
$$

, Sub ean (4) in eqn (2)

$$
\begin{align*}
\epsilon_{c} t_{c} & =\epsilon_{f} t_{f}+\epsilon_{m} t_{m} \\
\epsilon_{c} & =\epsilon_{f}\left(\frac{t_{f}}{t_{c}}\right)+\epsilon_{m}\left(\frac{t_{m}}{t_{c}}\right) \\
\epsilon_{c} & =\epsilon_{f} V_{f}+\epsilon_{m} V_{m} \quad \because V_{f}=\frac{V_{f}}{V_{r}} \\
\frac{\sigma_{c}}{F_{-}}= & \sigma_{f} V_{f}+\frac{\sigma_{m}}{\sigma_{m}} V_{m}
\end{align*}
$$

Dr. T. JAYACHANDRA PRASAD
ME.P.D.FIEFERTEMNFENMSTEMIEEE
PRINCIPAL RGM Collige of Engg, \& Tech., NANDYAL-S18501, Kurnool (Dt), A.P.

$$
\begin{aligned}
\frac{1}{E_{c}} & =\frac{V_{f}}{E_{f}}+\frac{V_{m}}{E_{m}} \sigma_{c}=\sigma_{m}=\sigma_{t} \\
E_{c} & =\frac{E_{f E_{m}}}{V_{f E_{m}+V_{m} E_{f}}}
\end{aligned}
$$

In general

$$
E_{c}=\frac{1}{\sum_{i=1}^{n} \frac{V_{i}}{E_{i}}}
$$

(c) Major poisson's ratio $\left(v_{12}\right)$

$$
\begin{aligned}
& v_{12}=\frac{\left(\epsilon_{c}\right)^{T}}{\left(\epsilon_{c}\right)^{L}} \\
& v_{12}=v_{f} V_{f}+v_{m} V_{m}
\end{aligned}
$$

$$
V_{f}, V_{m}=\text { vol. fractions of fiberimatrix rest }
$$

$$
v_{f,} v_{m}=\text { poissoris ratio of fiber \& matorix }
$$

(d) In-plane shear modulus (Gir)

$$
\begin{align*}
& S_{c}=S_{f}+S_{m}-(1) \tag{1}\\
& S_{c}=\gamma_{c} t_{c}-(2) \tag{2}\\
& S_{f}=\gamma_{f} t_{f} \text {-(3) } \tag{3}\\
& S_{m}=\gamma_{m} t_{m} \text {-(4) } \\
& G_{12}=\frac{\tau_{c}}{\gamma_{c}} \\
& \gamma_{c}=\frac{\sigma_{c}}{G_{12}} \\
& \gamma_{f}=\frac{\tau_{f}}{G_{f}} \\
& \gamma_{m}=\frac{\tau_{m}}{G_{m}}
\end{align*}
$$

Dr. T. JAYACHANOURA PRASAD
 RGM college of fige k Tech.,

Sub. ens (1) (3), (5) in equ(1)

$$
\begin{aligned}
\gamma_{e} t_{c} & =\gamma_{f} t_{f}+\gamma_{m} t_{m} \\
\frac{\tau_{c}}{G_{i 2}} t_{c} & =\frac{\tau_{f}}{G_{f}} t_{f}+\frac{\tau_{m}}{G_{m}} t_{m}
\end{aligned}
$$

white $\quad \tau_{c}=\tau_{f}=\tau_{m}$

$$
\begin{align*}
& \frac{t_{c}}{G_{12}}=\frac{t_{f}}{G_{f}}+\frac{t_{m}}{G_{m}} \\
& \frac{1}{G_{12}}=\frac{1}{G_{f}}\left(\frac{t_{f}}{t_{c}}\right)+\frac{1}{G_{m}}\left(\frac{t_{m}}{t_{c}}\right) \\
& \frac{1}{G_{12}}=\frac{V_{f}}{G_{f}}+\frac{V_{m}}{G_{m}} \quad
\end{align*} \quad \therefore V
$$

$$
\because V_{f}=\frac{t_{f}}{V_{c}}
$$

$$
\Leftrightarrow V_{m}=\frac{t m}{t_{c}}
$$

'(a) Reinforcement: It's a something which builds strung in the composite is known as reinforcement.

Reinforcements are different for different matrices,
polymer Matron composite (PMC)
MC's.

Reinforcements
Ex: Glass fibers
Kevlar fibers
Carbon fibers
Silica fibers
Natural fibers

Matrices
Ex:
Epoxy
polyester
vinylester poly-vinylchloride poly Carbonate

Metal Matrix comp (CMC$)$

Reinforcing
$\frac{\text { agent }}{\text { \# Carbon }} \frac{\text { Matrix }}{A 1,}$
fibers Mig,

\# | Ste Fibers tithe |
| :--- |

Ceramic Matrix Composite (chis)

They Consists of Ceramic fibers em ceramic matron.

Reinforcements
carbon
$\mathrm{Al}_{2} \mathrm{O}_{3}$
Sic

$\frac{\text { Motrin }}{\text { Cant }}$| ina |
| :---: |
| Lite |

Mullite
($\mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{SO}_{2}$)
Purpose of reinforceme
I. To Priereasetto Lohanical properties of the neat resincmutre such as

* To redien the strength
* To noreose The toughies
* Te reduce the brittiresess
* To increase the fatigue life
II. P increase. Thermal properties such al
* Glass transition temp.
* Thermal stability
* Thermal Shock.
III. To increase the corrosion resistance
IV. To increase. The electrical and magnetic properties
V. To increase the stability of the composite
VI. To increase the hardness of
following fibers ane used in the polymer composite a. Glass Fibers
' Kevlar fibers
Carbon fibers
silica fibers
Boron fiber
gran carbide fibers
? fibers
a. Glass fibers

\# Mixing hade up if divect-mett process. coating ing, fusion, drawing, quenching, Coating are Th Different process used for producing glass-fibers
\# The following types ane .ed in glax-fibers

E-Glass: High electrica conductivity
S-"Glass: Hish Strengus(stiflnees)
C-Glass :. Hts corrosion resistance
D-Glass: Dielectric propejeses
R-Glass: Hish Mechanical propertèer.
b: Kev-lar fibers Appins: Car washers, food processing, Dock \& maxine, Arro-space ξ defense apolseetron

- Strong \& heat resistant
- Maintain strength ξ resiliance up to - 196 C
- Slightly stranger at lower temp.
- less prone to brooke
- Hrshtensile strengit

Applications
Bullet proof vests
Bicycle tires
Racing sails
armors
Cricket bats
Helmets
C. Carbon fibers
\# Carbon atoms are bonded together to form long char \# produced by PAN or pitch \# It's a super strong material and too light wit. \# Five time stranger \& Twotimes stiffer than steel.
\# It need some safety precalistons as they produce skin irritation due to dust.
\# It has kish wear resistance
\# It has low thermal coreft. of exp.
\# less weight
\# long werteins life
\# Hash tensile strength and extenstinat break.
\# High straitness.

Applis
Rackets
Golf stickles
Automobile bodies
Mobile Cases fuel calls.
d. Silica fibers
\# Silica fibers are made of sodium silicate (water stans) \# used for heat protection application
\# These have host mechanical strensos against pulling and bending
\# These have very good optical properties \# used in sound, light and guiding applications

Apples
smart Cameras
LED - TV's

Blue Ray disc.
Solar cues
LED light bulbs

e. Boron fibers (BF)
\# First introduced in the year of 1959 \# chemical vapour deposition process is use to produce BF.
\#

$$
2 \mathrm{BCl}_{3}(9)+3 \mathrm{H}_{2}(9) \rightarrow 2 \mathrm{~B}(3)+6 \mathrm{HCl}(9)
$$

f. Boron Carbide Fiber (Bye)
\# It is also called black dimond and dark gray color.
\# Hardest material after dimond.

\# Hosh fracture toughness up to $3.5 \mathrm{MPa} / \mathrm{m}^{2}$
\# Low thermal conductivity
\# Susceptratle to thermal shook failure
\# Extremely brittle
\# Good Thermal neutron capture ability
Applications
cutting tools ξ dies
Abrasives
solid fuels
Brake living materials
wear resistant coatings
High po water jet nozzle cutters armor plating.
9. Sic Fibers
properties
a) $b \rho$
ii) \& E
iii) $\phi \alpha$
iv) \& Thermal conductivity
v) 4 Hardness \therefore in ateatie Modiolus
vii) Host Thermel should resistance.

Apples
pumps \& rockets in iorenorins I

Dr. T. JAMÁACHANDRA PRASAD
 PRINCIPAL R G M College of Eng, \& Tech., NANDYAL-S18501, Kurnool (DI), A.P.

45
5. Filament winding:
\# If's a automatic method for creating composite Structures by winding filament under tension over a rotating mandrel (tool).
\# fiber placement is guided by a m / c with two or more axis of motion as it can be seen in the simple sehematre diagram.
\# Filament winding is used to manufacture range of products suchas pipes, pipejoints, drive Shafts, masts, pressure vessels, storage tanks

Two types

(1) Continuous FW
(2) Discontinuous FW
(i) Continuous Foo
: In which fiber is continuous fed on to the mandes with the help of garage.
\# It helps us to produce uniform Thickyses
(2) Discontinuous Fo
\# Ditterent Layers of different fiber can be achived. \&
\# strenges of the product cannot maintained at all places.
$-3 m$

Ratterns

Circumferentel polar winding

Applications
Big pipes, Missites, Chemicel tanks pressure vessols, Sparting gerode.

(6)

Composite : It is defined as the process of lombining two or more constituents macroscopically to produ or yield useful material.

Fiber material embedded in a matrix materrial is known as composite

Camposite consists of two difterent montin 1 . (1) Reinforcement
(2) Matrix

Function of matrix
(a) It binds the reinforcement
(b) Transfer the load from matrix to neinforcement
(C) protect the reinfocement from adverse temperatures
(d) Reduces motsture absorption
(e) Low shrinkage
(7) Low coreft of thermal expansion
(3) Soot flow ability
(h) Resist heat \& electricity

Function of. Reinforcing agent

1. Stiffer
2. Stranger
3. Cost effective
4. Chemical inert
5. Heat resistant

6, Electrical properties
Types of composites

a) Polymer Matrix composites (PMC's)
\# If polymer as a matrix material dopped coth som fiber material then it is called Mc's.
\# we use different matrices in pmels such as Thermo plastic Material and Thermoset material and Rubber materials as a matrix.

PrC's

Thermoplastic Thermoses Rubber
Ex: PC, PP,. plastic e
\# physical E chemical Ex: Epoxy veinforeement materials place vital role to get ultimate performance of the PMC's.
\# In Pic's reinforcement used such as Glass fib silica fiber, Kevlar fiber, Carbon fiber are Some important fibers are used res
\# Glass fibers, Carbon fiber, $\&$ Kevlar fibers as used in automobile Industries q space indus and serve domestre applications as well.
\# Applications,
Can bodies
Fuel tanks Helmets
Rackets
Car bumpers

Metal Matrix composites (MMct)
\# MMC's are require to resist hist temp le beyond $25 \circ^{\circ} \mathrm{C}$ we need these materials.
\# tosh strength, stittuess, toughies, density, wear resistance, damping $\&$ modulus are. Very high for this MMC's.
\# Matrix and fibers combinations are as mentioned below.
$\left.\begin{array}{l}\text { Matrix } \\ \text { Aluminium } \\ \text { Magnesium } \\ \text { head } \\ \text { Copper }\end{array}\right\} \quad$ Fibers
Graphite

Boron

Al
Ti
Super alloys (cobalt bases)

Advantages
(1) Low theronal co-eff of expns.
(2) Hosh fithe reristance
(3) Hosh wear resistance
(4) Hosh transverse stiftwes, stoength an modulus
(5) No moistuse absooption
(b) Host electrical \& thermal conductiorts
(7) Better radiation resistance.
prisadvantages
(1) Complex Fabrication processes
(2) Hosh Cost of Reinforcements (3) Machining is ditticult
(4) Furnace is requised
(3) poor corrosion restestance.
(6) Fiber $\&$ matrix interactions et inghtemp degrade $u=$ mines
(0) Ceramic Matrix Composites (CMe's)

Advantages
(1) Excellent wear \& corrosion resistance
(2) Hish strength to wear ratio
(3) Hosh strungts retension at eleveted temp.
(4) Hosh Chemicel stability
(2) Irsh load camnying lapa
(5) Non-catastrophic faile

Disadvantages
(1) Difficult in fabrication
(2) Highly brittle
(3) Expensive processing
(4) Ditterence in α_{f} and α_{m} leads to. Thermal stresses on cooling

Application
Heat shields
components for gas turbines, stators vanes, blade.
Brake discs,
side bearing
Gas ducts, flame holder Burners

Carbon -Carbon Matrix Composites
\# They resort temp above $2500^{\circ} \mathrm{C}$
\# They overcorn all the problem in CMC's \# It's requires costly furnaces * Hash production cost.

RGM COLLEGE OF ENGINEERING \& TECHNOLOGY (AUTONOMOUS)
 31st March-2021
 IV B.Tech I Semester (R15) End Examinations (Regular) MECHANICS OF COMPOSITE MATERIALS
 MECH

Time: 3 Hrs

Note 1:Answer Question No. 1 (Compulsory) and 4 from the remaining
2:All Questions Carry Equal Marks
la Define mass volume fraction.
b Mention the applications of spray layup process?
c Mention two types of thermoplastic resins.
d Mention the advantages of Invariant Form of Stiffness and Compliance Matrices for an Angle Lamina.
e What are the functions of reinforcements in polymeric composites?
f Differentiate between a lamina and isotropic homogeneous material.
g What are semi-epirical models?
2 a) What is a composite material? Differentiate composite material from metallic alloy.
b) Explain potential applications of composites in the fields of marine, electronics, aerospace and automobile.
3 Explain the mechanics of materials approach to determine four elastic moduli of a composite lamina.
4 a) Explain Resin Transfer Molding with a neat sketch.
b) Discus Advantages, disadvantages and applications of Resin Transfer Molding.

5 a) Explain clearly different types of matrix materials.
b) Discuss about the following:
i) Silicon carbide fiber
ii) Boron carbide fiber

6 The Engineering constants for an orthotropic material are found to be $\mathrm{E}_{1}=40 \mathrm{Gpa}, \mathrm{E}_{2}=9 \mathrm{Gpa} ; \quad \mathrm{E}_{3}=9 \mathrm{Gpa}, v_{12}=0.26, v_{23}=0.21, v_{13}=0.21$
$\mathrm{G}_{12}=4.41 \mathrm{Gpa}, \quad \mathrm{G}_{23}=3.8 \mathrm{Gpa}, \mathrm{G}_{13}=3.8 \mathrm{Gpa}$. Find the stiffness matrix $[\mathrm{C}]$ and compliance matrix [S] for the above orthotropic material.
7 Find the Engineering constants for a 30° angle ply lamina. Use the following properties.

$$
\begin{equation*}
\mathrm{E}_{1}=204 \mathrm{Gpa}, \mathrm{E}_{2}=18.5 \mathrm{Gpa}, v_{12}=0.23, \mathrm{G}_{12}=5.59 \mathrm{Gpa} . \tag{14}
\end{equation*}
$$

$$
\begin{aligned}
& S_{x x}=7.27 \times 10^{-11} p a^{-1} \\
& S_{y y}=6.38 \times 10^{-11} p a^{-1} \\
& S_{x y}=-2.317 \times 10^{-11} p a^{-1} \\
& S_{S S}=4.52 \times 10^{-10} \\
& S_{x s}=-8.59 \times 10^{-11} \\
& S y s=4.33 \times 10^{-11}
\end{aligned}
$$

IV B. Tech I Sem R15 End Exams. (Regular) cell: 94411158 -
Sub: MCM ; Branch: ME
Time = 3 Hrs
Scheme of Evaluation
Max. Marks: 7
la) Defination of mass fraction
Code: Ac 338158 RD 321
(1) It's also known as mass percentage or percentage by mo
(1) It's the ratio of mass of the constituent to that of the total mats of le composite
$W_{\text {kn }}=$ Mass fraction of the compositae.
$W_{f}=$ nous fraction of 11 e- fiber

$$
\left.\begin{array}{l}
W_{m}=\frac{w_{m}}{w_{c}} \\
W_{f}=\frac{w_{f}}{w_{c}}
\end{array}\right\}
$$

Where, $\omega_{m}=w^{2}$ mass of the coating
$w_{f}=$ mass of lee fiber
We $=$ mass of te composite

$$
W_{m}+W_{f}=1
$$

$1 b$
Applications of Spray layup

- Making of custom parts
- Bath tubs,
- Boat hulls,
- Storage tanks
- Furniture components
- Swimming pools.

Ic Thermoplastic materials

- polycarbonate (PC) \quad - polystyrine (PS) \quad -
- poly-viny)-chloride (PVC) \}- (1)
- Nylon (polyamides.

Id Advantages

- stresses and strains on pricipat axes are computed?
- stifinuesexs are also calculated along the axes (Moduli)
- porssoris retros cam be calculated along the given planes.
- Engs.constants can also be calculated

1 R Reinforcements in Polymer Matrix composites (PMC)

Ex: Ex: Glass fores
Coirfiber Combenfiber
siselfiber Kevlar fiber
Banana fiber Silica fiber
If Hemp former
Lamina
(1)

Ir's a layer of fibrous material arranged in a plane with matrix mattoid in one particular direction Ex:

$3 N$

Isotropic

Homogeneous a refers uniformity of the structure of a material, but isotroptc materials are having Sarre properties in all direction If the properties ax same in a directions in any location of 11 material is 1 homogeneous

- Developed by Halphin. Tsai
(a) E_{1} = youngs modubus alang lie longitudivel axp

$$
=E_{f} V_{f}+E_{m} V_{m}
$$

(b) $E_{2}=$ poung's modulue along the transterec andi]

$$
=\left[\frac{1+\xi^{6} \eta V_{f}}{1-\eta V_{f}}\right] \times x_{m}
$$

where

$$
\begin{equation*}
\eta=\left[\frac{\frac{E_{f}}{E_{m}}-1}{\frac{E_{f}}{E_{m}}+\xi}\right] \tag{1}
\end{equation*}
$$

(c) $G_{12}=$ Inplane shear modulus

$$
=\left[\frac{1+\xi_{f} \eta V_{f}}{1-\eta V_{f}}\right] \times G_{m}
$$

where $\eta=\left[\frac{\frac{G f}{G_{m}}-1}{\frac{G f}{G m}+\xi}\right]$
$G_{m}, G f=$ Inplare shear moduluy of matrs x and fitier resp.
$E_{m}, E_{f}=$ Youngs modulus of matrix and fotrer resp.
$V_{f,} V_{m}=\begin{aligned} & \text { resp. } \\ & \text { Volume fractions of fiber a mol matoix } \\ & \text { resp }\end{aligned}$

2() Composite is a new material which is produced by combining two or mare materials by process (a)

Composite is material fiber is embeded in a matrix material.

- It is made up of two or more materials
- Matrix - material one
- Reinforcement - material two
- Matrix binds the other Constituents
- Reinforcement improves the strength and stratus of the material, protects from the environment

2b Field whee applteatrons of composites

Marine field

- Fishing boats
- Life boats
- Anti-marine ships
- Rescue ships
- Hover crafts
- Hulls
- Decks

$$
-\mathrm{pr}
$$

- Ru

Dr. T. JAMÁCHAND $\stackrel{\text { RA PRASAD }}{ }$

 NANDYAL-S18501, Kurnool (Ot), A.P.

- Scoitehes
- optical fibers
- Led JV's
- Mother boards
- Circuit boards
- wires
- Sinks

Aerospace
Gliders
Helicopter blades
Transmission Shafts
Elevators
spoilers
Rocket boosters
Nozzles
Antenna covers
Fuselage, Doors, seats
Landing gears

Automobile

- Leaf springs
- Bumpers
- Body components
- Chassos Components
- Engine components
- Engine bonnet
- Mud wings
- Lamp heads
- Cabins
- Instrument panels
- Window frames.

3. (a) Longitudinal modulus (E,)

To determine they the

following assumptions are made
(a) Strain experienced by the composite is equal io fiber and matrix

$$
\epsilon_{c}=\epsilon_{f}=\epsilon_{m}
$$

(b) Load applied on the composite is shared by Fiber and matrix

$$
P_{C}=P_{m}+P_{f}
$$

(b) Transverse modulus (E2)

Assumptrons
(()) $\sigma_{c}=\sigma_{f}=\sigma_{m}$
(B) $t_{c}=t_{f}+t_{m}$

(c)

$$
\begin{gather*}
S_{c}=S_{f}+S_{m}-3 \tag{2}\\
\epsilon=\frac{S}{t}=\frac{\Delta L}{L} \\
S=\epsilon t-4 \tag{4}
\end{gather*}
$$

\therefore egn-(B) is modified at

$$
\begin{aligned}
& \epsilon_{c} t_{c}=\epsilon_{f} t_{f}+\epsilon_{m} t_{m} \\
& \epsilon_{c}=\epsilon\left(\frac{t_{f}}{t_{c}}\right)+\epsilon
\end{aligned}
$$

$$
e_{c}=\epsilon f V_{f}^{t c}+f_{\text {Dr. TT AAMACHANDBA PRASAD }}
$$

 RGM Coliese of Ange Rech., Nanoval:-5i8

$$
\begin{align*}
& \epsilon_{c} \not \|_{c} A_{c}=E / f E_{f} A_{f}+{\notin M_{A_{m}}^{E_{m}}} \sigma=\frac{P}{A} \\
& P=\sigma A \\
& E_{c}=E_{f\left(\frac{A f}{A c}\right)+E m\left(\frac{A m}{A_{c}}\right) \quad \because E_{c}=E_{f}=E_{m}} \\
& E_{c}=E f V_{f}+E_{m} V_{m} \\
& \because V_{f}=\frac{A_{f}}{A_{c}} ; V_{m}=\frac{A_{m}}{A_{c}} \\
& V_{m}+V_{f=1} \\
& \because V_{m}=1-V_{f} \\
& E_{c}=E_{f} V_{f}+E_{m}\left(1-V_{f}\right) . \\
& E_{1}=E_{f} V_{f}+E_{m}\left(1-V_{f}\right): E_{c}=E_{1} \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\partial_{c}}{E_{c}}=\frac{A_{f}}{E_{f}} V_{f}+\frac{\partial_{m}}{E_{m}} V_{m} \\
& \frac{1}{E_{c}}=\frac{V_{f}}{E_{f}}+\frac{V_{m}}{E_{m}} \\
& E_{c}=\frac{E_{f} E_{m}}{V_{f} E_{m}+V_{m} E_{f}} \\
& E_{2}=\left[\frac{E_{f} E_{m}}{V_{f} E_{m}+V_{m} E_{f}}\right] \quad \because E_{c}=E_{2}
\end{aligned}
$$

(1) In-plane shear modulus (G12)

(a) $\tau_{c}=\tau_{f}=\tau_{m}$

$$
G=\frac{\tau}{\gamma}
$$

S_{c}, S_{f}, S_{m} are ${ }^{\text {the }}$ deformations in the compostes fiberi \& matrix sesp.

$$
\begin{gather*}
S_{c}=S_{f}+S_{m} \\
\delta_{c} t_{c}=f_{f} t_{f}+f_{m} t_{m} \tag{2}\\
G_{12}=\frac{\tau_{c}}{\gamma_{c}} \Rightarrow \delta_{c}=\frac{\tau_{c}}{G_{12}} \tag{3}\\
\delta_{f}=\frac{\tau_{f}}{G_{f}} \theta_{m}=\frac{\tau_{m}}{G_{m}} \tag{8}
\end{gather*}
$$

Sub. eqn (3), (4).(5) in eqn (2)

$$
\frac{\Sigma c^{3 c}}{G_{12}} t_{c}=\frac{\zeta f}{G f} t f+\frac{5 \hat{m}}{G m}+
$$

Dr. T. JAMCAC
 RGM College of Eng ing \& Tech., NANDVAL-S185501, Murnool (Dt), A.P.

$$
\frac{1}{G_{12}}=\frac{V_{f}}{G_{f}}+\frac{V_{m}}{G_{m}}
$$

where $V_{f}=\frac{t_{f}}{t_{c}}$
Where

$$
V_{f}=\text { Vol fractron of fotew } \because V_{m}=\frac{t_{m}}{t_{c}}
$$

$V_{m}=$ Nol. fraction of matara,
(1) major porssonis ratron $\left(V_{12}\right)$

$$
\begin{equation*}
V_{12}=V_{f} V_{f}+V_{m} V_{m} \tag{4}
\end{equation*}
$$

Whese
$v_{f}=$ porssoris ratio of fiter
$v_{m=}$ porsseris ratio of metora
$V_{m}, V_{f}=V_{0}$. fractrons of matroix \& fibur
4@ sisp
Resintramsfer mould (RTm)

- RTM is an intermediate volume moulding procus for producing composites
- In RTm resin injected under pressuse mould courtis.
- This process produces parsts with two firnstid Surifaces,
steps in RTM

Advantages

- Low skilled labour is required
- Low tooling Cost
- Low volatile envision
- Required design tailorability
- Good surface forrest
- West large complex shapes Can be made
- less maternal wastage
- Gored dimensioned tolerances
- Fast production.
- less emission due to closed mould

Disadvantages

- Preforms are labour intensoue
- Waste may be his b
- Chances of moisture entrapment
- Disfartron of fiber during imgectron of x som due to fotzer wash

- Control of rests uniformity is different.
Applicatreny
- Complex structures can be produced
- Antomotove body parts, big containers, barb tubs, helmets etc
- vehicle panels
- Boat hulls,
wind turbine blades
- Aerospace parse.

4 types of matrix matrsiel

1) polysurs
2) metals
3) Ciramicy

Pmés MMC's CMC's cCMC's
4) Canbon
potymers
($25^{\circ} \mathrm{C}$) ($700^{\circ} \mathrm{C}$) $\left(250{ }^{\circ} \mathrm{C}\right)\left(3000^{\circ} \mathrm{C}\right)$

Thermoset

- Two diftescut matrix plasticy
Lempositicu (Pme's)

Therrosests

$$
E x: \text { - Epoxy }
$$

- polyester
- vinylester

Thermoplastecy
polyethylene (PE)
poly carbonate (PC)
polystyrene (PS)
polyving) chlorsde(Pre)
metals
Cermets, Tic, TicN,
cemented carbioled

Ceramics
Ceramors

$$
\mathrm{Al}_{2} \mathrm{O} 3, \mathrm{Sic}
$$

APptieatron: 700 materiels.
Canbon Casbon, grapinte

Applicatron:
Brarce pads

Silicon (arbide fiber (Bic)

- Hosh strengtr at elevated temp.
- Hosh oaidatron resistence
- Hosh micro-strectusel stabrity
- Hish stiftuess
- Hish tensole strungis
- Low thermel expansrar
- Low weisht-

Boran - Carbide fiber

- Extreme hardney
- Difticurlt to Sonter to hish relative densities
- Good chemical sesistance
- Good nuclear propentres
- It's elastoe madulus is close to diamond

Given Data

$$
\begin{array}{l|l|l}
E_{1}=40 \mathrm{GPa} & G_{12}=4.41 \mathrm{GPa} & v_{12}=0.26 \\
E_{2}=9 \mathrm{GPa} & G_{23}=3.8 \mathrm{GPa} & v_{23}=0.21 \\
E_{3}=9 \mathrm{GPa} & G_{13}=3.8 G P a & v_{13}=0.21 \\
F_{\text {ind }} &
\end{array}
$$

(a) Compliance matrix [S]
(b) Stiftinses matrix [c]

Given maternel
or thotrapie materbal
So):- Using Beltis Reciprocel low

$$
\begin{aligned}
& \frac{V_{i j}}{E_{i}}=\frac{V_{j i}}{E_{j}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{V_{31}}{E_{3}} & =\frac{E_{1}}{V_{31}}=\frac{E_{3}}{E_{1}} V_{13}=\frac{9}{40} \times 0.21 \\
V_{31} & =0.047 \\
\frac{V_{23}}{E_{2}} & =\frac{V_{32}}{E_{3}} \\
V_{32} & =\frac{E_{3}}{E_{2}} V_{23}=\frac{9}{9} \times 0.21 \\
& -V_{32}=0.21
\end{aligned}
$$

$$
\{\epsilon\}=[s]\{\sigma\}
$$

where $[s]=$ compliance matrin.

$$
\begin{gathered}
S_{12}=\frac{-V_{21}}{E_{2}}=-\frac{0.0585}{9 \times 109}=-6.5 \times 10^{-12} \mathrm{~Pa}^{-1} \\
S_{12}=S_{21}=-V_{21}
\end{gathered}
$$

$$
S_{12}=S_{21}=-\frac{V_{21}}{E_{2}}=6.5 \times 1090^{-12} \mathrm{~Pa}^{-1}
$$

$$
S_{13}=-\frac{V_{31}}{E_{3}}=\frac{-0.047}{9 \times 109}=-5.22 \times 10^{-12} \mathrm{pa}^{-1}
$$

$$
S_{13}=S_{31}=\frac{-V_{31}}{E_{3}}=-5.22 \times 10^{-12} \mathrm{pa}^{-1}
$$

$$
S_{22}=\frac{1}{E_{2}}=\frac{E_{3}}{9 \times 10^{9}}=1.11 \times 10^{-10} \mathrm{~Pa}^{-1}
$$

$$
S_{11}=\frac{1}{E_{1}}=\frac{1}{40 \times 10^{9}}=2.5 \times 10^{-11} \mathrm{~Pa}^{-1}
$$

$$
\begin{aligned}
& S_{23}=\frac{-V_{23}}{E_{2}}=-\frac{0.21}{9 \times 109}=-10 \\
& S_{20}=-V_{23}=-0.23 \times 10^{-11} \operatorname{poi}^{2}
\end{aligned}
$$

Dr. T. JAYACHANDRA PRASAD
 R G M College of Engg. \& Tech., NANDYAL-518501, Kurnool (Dt), A.P.

$$
\begin{align*}
& S_{44}=\frac{1}{G_{23}}=\frac{1}{3.8 \times 109}=2.63 \times 10^{-10} \mathrm{pa}^{-1} \\
& S_{55}=\frac{1}{G_{13}}=\frac{1}{3.8 \times 109}=2.63 \times 10^{-10} 0^{-10} \mathrm{pa} \\
& S_{66}^{-1}=\frac{1}{G_{12}}=\frac{1}{4.41 \times 10^{-1}}=\left[\begin{array}{ccccc}
2.5 \times 10^{-11}-6.5 \times 10^{-12}-5.22 \times 10^{-12} & 0 & 0 & 0 \\
-6.5 \times 10^{-12} & 1.11 \times 10^{-10}-2.33 \times 10^{-11} & 0 & 0 & 0 \\
-5.25 \times 10^{-12}-2.33 \times 10^{-11} 1.11 \times 10^{-10} & 0 & 0 & 0 \\
0 & 0 & 0 & 2.63 \times 10^{-10} & 0 \\
0 & 0 & 0 & 2.63 \times 10^{-10} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2.26 \times 10^{-10}
\end{array}\right]
\end{align*}
$$

WKT
Stituess m drix is goven by

Dr K. THIRUPATHI REDDY

$$
\begin{aligned}
& \begin{array}{r}
33=\frac{1}{1-U_{13} V_{31}}=\frac{1-0.21 \times 0.047)}{(1-9 a}=9.089 \times 10^{9 P a} \\
9.089 \mathrm{GPa}
\end{array} \\
& C_{44}=G_{23}=3.8 \times 19^{9} \mathrm{~Pa}=3.8 \mathrm{GPa} \\
& C 55=G 13=3.8 G P G \\
& C_{66}=G_{12}=4.41 G P a \\
& C_{12}=\frac{V_{12} E_{12}}{1-V_{12} V_{21}}=\frac{0.26 \times 9 \times 109}{(1-0.26 \times 0.0585)} \mathrm{Pa}=2-37 \times 10^{9}+ \\
& =2.377 \mathrm{GPa} \\
& C_{13}=\frac{\nu_{13} E_{3}}{1-\nabla_{13} V_{31}}=\frac{0.21 \times 9 \times 109}{(1-0.21 \times 0.047)} \mathrm{Pa}=1.90 \times 109 \mathrm{~Pa} \\
& C_{13}=1.90 \mathrm{GPa}: \quad \because C_{13}=C_{31} \\
& C_{21}=\frac{\nu_{21} E_{1}}{1-V_{21} V_{12}}=C_{12}=2.32 \times 10^{9} \mathrm{~Pa} \\
& C_{23}=\frac{V_{23} E_{3}}{1-V_{23} V_{32}}=\frac{0.21 \times 9 \times 109}{1-0.21 \times 0.21} \mathrm{~Pa}=1.977 \times 100 \\
& C_{23}=1.97 \mathrm{GPa} \\
& C_{23}=C_{32} \quad \because \quad C_{i j}=C_{3 i} \\
& {[c]=\left[\begin{array}{cccccc}
40.61 & 2.37 & 1.9 & 0 & 0 & 0 \\
2.37 & 9.13 & 1.977 & 0 & 0 & 0 \\
1.89 & 1.977 & 9.089 & 0 & 0 & 0 \\
0 & 0 & 0 & 3.8 & 0 & 0 \\
0 & 0 & 0 & 0 & 3.8 & 0 \\
0 & 0 & 0 & 0 & 0 & 4.41
\end{array}\right] \text { GPa }}
\end{aligned}
$$

$$
\begin{align*}
& \theta=3 i \\
& E_{1}=204 \mathrm{GPa} \\
& E_{2}=18.5 \mathrm{GPa} \\
& V_{12}=0.23 \tag{2}\\
& G_{12}=5.59 \mathrm{GPa}
\end{align*}
$$

WRT

$$
c=\cos \theta=\cos 30^{\circ}=
$$

$$
s=\sin \theta=\sin 30^{\circ}
$$

where

$$
\begin{aligned}
& s_{x x}= m_{1} s_{1}+2 \times m^{2} s^{2}+s^{2} \\
&= c^{4} s_{11}+s^{4} s_{22}+2 c^{2} s^{2} s_{12}+c^{2} s^{2} s_{66} \\
& s_{x x}=(0.866)^{4} \times 4.901 \times 10^{-12}+(0.5)^{4} \times 5.405 \times 10^{-11} \\
&+2 \times(0.866)^{2} \times(0.5)^{2} \times\left(-1.127 \times 10^{-12}\right)+(0.866)^{2} \times(0.5) \\
& \times 1.788 \times 10^{-10} \\
& S_{x x}==922 \times 10^{-11} \mathrm{~Pa}^{-1} \\
& \hline 9.27 \times 10^{-11} \mathrm{~Pa}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
S_{x y}= & c^{2} s^{2} s_{11}+c^{2} s^{2} s_{22}+\left(c 4+s^{4}\right) s_{12}-c^{2} s^{2} S_{66} \\
= & (0.866)^{2} \times(0.5)^{2} \times 4.901 \times 10^{-12}+(0.866)^{2} \times(0.5)^{2} \times 5.8105 \times \\
& +\left((0.866)^{4}+(0.5)^{4}\right) \times-1.127 \times 10^{-12}-(0.866)^{2} \times(0.5)^{2} \times 1.781 \\
& S_{x y}=-2.317 \times 10^{-11} a^{-1}=-2.317 \times 10^{-11} 80.10
\end{aligned}
$$

$$
\begin{aligned}
s_{y y}=s^{4} s_{11} & +c^{4} s_{22}+2 c^{2} s^{2} s_{12}+c^{2} s^{2} s_{66} \\
=(0.5) 4 & \times 4.901 \times 10^{-12}+(0.566)^{4} \times 5.405 \times 10^{-11} \\
& +2 \times(0.866)^{2} \times(0.5)^{2}\left(-1.127 \times 10^{-12}\right. \\
& +(0.866)^{2} \times(0.5)^{2} \times 1.288 \times 10^{-1}
\end{aligned}
$$

$$
\begin{gathered}
D_{S S}=4 c^{2} s^{2} S_{11}+4 c^{2} s^{2} s_{22}-8 c^{2} s^{2} S_{12}+\left(c^{2}-s^{2}\right)^{2} S_{66} \\
=4 \times(0.866)^{2} \times(0.5)^{2} \times 4.901 \times 10^{-12}+4 \times(0.866)^{2} \times(0.5)^{2} \times 5.405 \times 10^{-11} \\
-8 \times(0.866)^{2} \times(0.5)^{2} \times\left(-1.127 \times 10^{-12}\right) \\
+\left[(0.866)^{2}-(0.5)^{2}\right]^{2} \times 1.788 \times 10^{-10} \\
S_{S S}=2.24 \times 10^{10} \mathrm{~Pa} \quad 4.52 \times 10^{-10} \mathrm{~Pa}^{-1}
\end{gathered}
$$

$$
\begin{array}{r}
S_{x s}=2 c 3 s S_{11}-2 \operatorname{cs}^{3} s_{22}+2\left(\operatorname{cs}^{3}-c^{3} s\right) s_{12}+\left(\operatorname{cs}^{3}-c^{3} s\right) \\
=2 \times(0.866)^{3} \times 0.5 \times 4.901 \times 10^{-12}-2 \times 0.866 \times(0.5)^{3} \times 5.405 \times 10^{-11} \\
+2\left(0.866 \times(0.5)^{3}-(0.866)^{3} \times 0.5\right) \times\left(-1.127 \times 10^{-12}\right) \\
+\left(0.866 \times 0.5^{3}-(0.866)^{3} \times 0.5\right) \times 1.788 \times 10^{-10} \\
\quad S_{x s}=-6.10^{-11} \mathrm{~Pa} \quad-8.59 \times 10^{-11} \mathrm{~Pa}^{-1}
\end{array}
$$

$$
\begin{align*}
& s_{y s}= 2 \operatorname{cs}^{3} s_{11}-2 c^{3} s s_{22}+2\left(c^{3} s-c s^{3}\right) s_{12}+\left(c^{3} s-c^{3}\right) s_{6} \\
&= 2 \times 0.566 \times(0.5)^{3} \times 4.901 \times 10^{-12}-2 \times(0.866)^{3} \times 0.5 \times 5.40 \\
&+2\left((0.866)^{3} \times 0.5-0.566 \times(0.5)^{3}\right) \times 1.788 \times 10^{-10} \\
& s_{y s}=40 \times 10^{-11} 0^{-1} \quad \text { (r0) } 4.336 \times 10^{-11} \mathrm{~Pa}^{-1} \tag{曷}
\end{align*}
$$

$$
\left\{\begin{array}{l}
\epsilon_{x} \\
\epsilon_{y} \\
\delta_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
\frac{1}{E_{x}} & \frac{V_{x y}}{E_{y}} & \frac{\eta_{x y}}{G_{x y}} \\
\frac{-V_{y x}}{E_{x}} & \frac{1}{E_{y}} & \frac{\eta_{s y}}{\sigma_{x y}} \\
\frac{\eta_{s x}}{\epsilon_{s x}} & \frac{\eta_{y s}}{E_{y}} & \frac{1}{G_{x y}}
\end{array}\right]\left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\} \text {-(1) }
$$

let us equate (1) \& (2)
eqn (1) $=e_{\text {qn }}(2)$ in terms of comptiance matrix

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
S_{x x} & S_{x y} & S_{x s} \\
S_{y x} & S_{y y} & S_{y s} \\
S_{s x} & S_{s y} & S_{s s}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{E_{x}} & \frac{-V_{y x}}{E_{y}} & \frac{\eta_{x s}}{G_{x y}} \\
\frac{-\nabla_{x y}}{E_{x}} & \frac{1}{E_{y}} & \frac{\eta_{s y}}{G_{x y}} \\
\frac{\eta_{s x}}{E_{x}} & \frac{\eta_{y s}}{E_{y}} & \frac{1}{G_{x y}}
\end{array}\right]} \\
& S_{x x}=\frac{1}{E_{x}} \Rightarrow E_{x}=\frac{1}{S_{x x}}=\frac{1}{7.27 \times 10^{-11}}=1.37 \times 10^{10} \mathrm{~Pa} \\
& \text { syy }=\frac{1}{E_{y}} \Rightarrow E_{y}=\frac{1}{\text { syy }}=\frac{1}{6.38 \times 10^{-11}}=1.56 \times 10^{10} \mathrm{~Pa} \\
& S_{S S}=\frac{1}{G_{x y}} \Rightarrow G_{x y}=\frac{1}{S_{S S}}=\frac{1}{4.52 \times 10^{-10}}=2.22 \times 10^{9} \mathrm{~Pa} \\
& S_{x y}=\frac{-V_{y x}}{E_{y}} \\
& V_{y x}=-E_{y} \times S_{x y} \\
& =-\left(1.56 \times 10^{10}\right) \times-2.317 \times 10^{-11} \\
& \nabla_{y_{x}}=0.3614 \\
& \because V_{i j}=\nu_{j i} \\
& \nabla_{y x}=V_{x y}=0.3614 \\
& S_{x s}=\frac{\eta_{x s}}{G_{x y}} \Rightarrow \eta_{x s}=S_{x s} \times G_{x y} \\
& =-8.59 \times 10^{-11} \times 2.22 \times 10^{9} \\
& \eta_{x s}=-0.188 \\
& \because \eta_{i j}=\eta_{j} \\
& \eta / 5 x=-0.188
\end{aligned}
$$

$$
\begin{aligned}
& s y s=\frac{\eta_{s y}}{G x y} \Rightarrow \eta_{s y}=G x y \times S y s \\
& \eta_{y}=2.22 \times 10^{9} \times 4.33 \times 10^{-11} \\
& \eta_{y y}=0.095 \quad \cdots \eta_{i j}=\eta_{j j} \\
& \eta s y=\eta_{y s}=0.095
\end{aligned}
$$

\qquad
THE END

Given data

$$
\begin{aligned}
& \left(F_{1}\right)_{t}=2280 \mathrm{MPa} \\
& \left(F_{2}\right)_{t}=59 \mathrm{MPa} \\
& F_{6}=69 \mathrm{MPa} \\
& \left(F_{1}\right)_{e}=1450 \mathrm{MPa} \\
& \left(F_{2}\right)_{e}=228 \mathrm{MPa}
\end{aligned}
$$

As ' θ ' is not given let us assume $\theta=60^{\circ}$

$$
\begin{gathered}
m=\cos 60=0.5 \\
n=\sin 60=0.866 \\
\left\{\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\tau_{12}
\end{array}\right\}=[T]\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{n y}
\end{array}\right\}
\end{gathered}
$$

where

$$
\begin{aligned}
& {[T] }=\left[\begin{array}{ccc}
m_{2} & n^{2} & 2 m n \\
n^{2} & m^{2} & -2 m n \\
-m n & m n & m^{2}-n^{2}
\end{array}\right]=\left[\begin{array}{ccc}
0.25 & 0.749 & 0.866 \\
0.749 & 0.25 & -0.866 \\
-0.433 & 0.433-0.499
\end{array}\right] \\
&\left\{\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\tau_{12}
\end{array}\right\}=\left[\begin{array}{ccc}
0.25 & 0.749 & 0.866 \\
0.749 & 0.25 & -0.866 \\
-0.433 & 0.433-0.499
\end{array}\right]\left\{\begin{array}{c}
F_{0} \\
-F_{0} \\
0
\end{array}\right\} \\
& \sigma_{1}=0.25 F_{0}-0.749 F_{0}+0=-0.499 F_{0} \\
& \sigma_{2}=0.749 F_{0}-0.25 F_{0}+0=0.499 F_{0} \\
& \sigma_{12}=-0.433 F_{0}-0.433 F_{1}
\end{aligned}
$$

Tsai - Hill Theory

$$
\begin{aligned}
& \sigma_{1}=-0.499 F_{0} \\
& \sigma_{2}=0.499 F_{0} \\
& \tau_{12}=-0.433 F_{0} \\
&\left(\frac{\sigma_{1}}{\left(F_{1}\right)_{t}^{4}}\right)^{2}-\left(\frac{\sigma_{1} \sigma_{2}}{\left[\left(\sigma_{1}\right)_{t}^{4}\right]^{2}}+\left(\frac{\sigma_{2}}{\left(F_{2}\right)_{t}^{4}}\right)^{2}+\left(\frac{\sigma_{12}}{\left(\tau_{12}\right)^{4}}\right)^{2} \geqslant 1\right. \\
&\left(\frac{0.499 F_{0}}{2280}\right)^{2} \approx\left(\frac{-0.499 \times 0.499 F_{0}^{2}}{(2280)^{2}}\right)+\left(\frac{0.499 F_{0}}{59}\right)^{2} \\
& 1.2387 \times 10^{-4} F_{0} \geqslant 1 \\
& F_{0}=8072.67 \mathrm{MPa}
\end{aligned}
$$

Ans:

$$
\left.\begin{array}{l}
\sigma_{x}=F_{0}=8072.67 \mathrm{MPa} \\
\sigma_{y}=-F_{0}=-8072.67 \mathrm{MPa} \\
\tilde{\tau}_{x y}=0
\end{array}\right\}
$$

$$
\delta x \times x u l^{8}
$$

[^0]: * Table 3.1 and

[^1]: ON
 Dr K. THIRUPATHI REDDY
 Dr. T. JAYACHANDRA PRASAD ME.E.D. FFIE FETE MNNFEN,MSTEMIEEE

[^2]: * Table 3.1 and Table 3.2 give the typical properties of common fibers and matrices tem of units, respectively. Note that fibers such as graphite and aramids are trans natrices are generally isotropic. The typical properties of common fibers given in Table 3.3 and Table 3.4, respectively, in the USCS system of unit

[^3]: * A representative volume element (RVE) of a material is the smallest part of thr ts the material as a whole. It could be otherwise intractable to account fc re constituents of the material.

[^4]: ON
 Dr K. THIRUPATHI REDDY
 Dr. T. JAYACHANDRA PRASAD ME.E.D. FFIE FETE MNNFEN,MSTEMIEEE

[^5]: ON
 Dr K. THIRUPATHI REDDY
 Dr. T. JAYACHANDRA PRASAD ME.E.D. FFIE FETE MNNFEN,MSTEMIEEE

[^6]: ON
 Dr K. THIRUPATHI REDDY
 Dr. T. JAYACHANDRA PRASAD ME.E.D. FFIE FETE MNNFEN,MSTEMIEEE

[^7]: ON
 Dr K. THIRUPATHI REDDY
 Dr. T. JAYACHANDRA PRASAD ME.E.D. FFIE FETE MNNFEN,MSTEMIEEE

[^8]: ON
 Dr K. THIRUPATHI REDDY
 Dr. T. JAYACHANDRA PRASAD ME.E.D. FFIE FETE MNNFEN,MSTEMIEEE

[^9]: ON
 Dr K. THIRUPATHI REDDY
 Dr. T. JAYACHANDRA PRASAD ME.E.D. FFIE FETE MNNFEN,MSTEMIEEE

[^10]: ON
 Dr K. THIRUPATHI REDDY
 Dr. T. JAYACHANDRA PRASAD ME.E.D. FFIE FETE MNNFEN,MSTEMIEEE

[^11]: ON
 Dr K. THIRUPATHI REDDY
 Dr. T. JAYACHANDRA PRASAD ME.E.D. FFIE FETE MNNFEN,MSTEMIEEE

[^12]: ghn
 Dr K. THIRUPATHI REDDY
 Professor \& Head of M.E and SEimiNS Department of Mechanical Engineering NANDYAL 518 Bbi, Kurnool (Dish), A.P

 Dr. T. JAYACHANDRA PRASAD ME,Ph.D.FIE.FIETE MNAFEN,MSTE, MIEEE

[^13]: ON
 Dr K. THIRUPATHI REDDY
 Dr. T. JAYACHANDRA PRASAD ME.E.D. FFIE FETE MNNFEN,MSTEMIEEE

[^14]: ON
 Dr K. THIRUPATHI REDDY
 Dr. T. JAYACHANDRA PRASAD ME.E.D. FFIE FETE MNNFEN,MSTEMIEEE

[^15]: ON
 Dr K. THIRUPATHI REDDY
 Dr. T. JAYACHANDRA PRASAD ME.E.D. FFIE FETE MNNFEN,MSTEMIEEE

[^16]: ON
 Dr K. THIRUPATHI REDDY
 Dr. T. JAYACHANDRA PRASAD ME.E.D. FFIE FETE MNNFEN,MSTEMIEEE

[^17]: ONS
 Dr K. THIRUPATHI REDDY
 Dr. T. JAYACHANDRA PRASAD ME.E.D. FFIE FETE MNNFEN,MSTEMIEEE

[^18]: On
 Dr K. THIRUPATHI REDDY
 Dr. T. JAYACHANDRA PRASAD
 PRINCIPAL

