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IV B.Tech, I-Sem (ME)        T        C 
3+1*   3 

[A0338158] MECHANICS OF COMPOSITE MATERIALS 
(Department Elective-III) 

OBJECTIVE: 
 This course provides students a background in modern lightweight composite 

materials which are being used in an ever-increasing range of applications and 

industries. Basic knowledge of composites will allow engineers to understand the 

issues associated with using these materials, as well as gain insight into how their 

usage differs from metals, and ultimately be able to use composites to their fullest 

potential.  

OUTCOMES: At the end of the course, the student will be able to: 

 Know the fundamental concepts of composite materials. 

 Understand various manufacturing methods of composites. 

 Learn macro and micro-mechanical analysis of a lamina. 

 Understand failure theories, and to determine the strength of a lamina. 

UNIT-I 

Introduction to Composite Materials: Introduction, Classification: Polymer Matrix 

Composites. Metal Matrix Composites, Ceramic Matrix Composites, Carbon–Carbon 

Composites, Fiber. Reinforced Composites and nature-made composites, and applications. 

UNIT-II 

Reinforcements: Fibres-  Glass,  Silica,  Kevlar,  carbon,  boron,  silicon  carbide,  and  

boron  carbide. fibres. Particulate composites, Polymer composites, Thermoplastics, 

Thermosets, Metal matrix and ceramic composites. 

UNIT-III 

Manufacturing Processes: Hand lay-up, Spray lay-up, Vacuum bagging, Pultrusion, Resin 

Transfer Molding (RTM), Filament winding. 

UNIT-IV 

Macro-Mechanical Analysis of a Lamina: Introduction, Definitions:  Stress, Strain, Elastic 

Moduli, Strain Energy.  Hooke‟s  Law  for  Different  Types  of  Materials – Anisotropic 

material, monoclinic material and orthotropic material,  Hooke‟s  Law  for  a  Two 

Dimensional  Unidirectional  Lamina - Plane  Stress  Assumption,  Reduction  of  Hooke‟s  

Law  in Three  Dimensions  to  Two  Dimensions,  Relationship  of  Compliance  and  

Stiffness  Matrix  to Engineering Elastic Constants of a Lamina, Angle Lamina. 

UNIT-V 

Hooke‟s Law for a Two-Dimensional Angle Lamina, Engineering Constants of an Angle 

Lamina,  Invariant  Form  of  Stiffness  and  Compliance  Matrices  for  an  Angle  Lamina,  

Strength  Failure theories of an angle lamina- Maximum  stress Failure  Theory, Tsai–Hill  

Failure  Theory,  Tsai–Wu  Failure  Theory.  

UNIT-VI 

Micro-Mechanical Analysis of a Lamina: Introduction, Volume and Mass Fractions, 

Density, and  Void  Content,  Evaluation  of  the  Four  Elastic  Moduli – Longitudinal 

young‟s modulus, Transverse young‟s modulus, Major Poisson‟s ratio and In-plane shear 

modulus by  Strength  of  Materials  Approach,  Semi Empirical Models, Ultimate  Strengths  

of  a  Unidirectional  Lamina- Longitudinal tensile strength, Transverse tensile strength, 

Longitudinal compressive strength, Transverse compressive strength. In-Plane shear 
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strength. 

TEXT BOOKS: 

1. Mechanics of Composite Materials- Autar K. Kaw, 2/e, CRC Pubi. 

2. Analysis and performance of fibre Composites, B. D. Agarwal and L.J. Broutman 

Wiley- Inter science,  

REFERENCE BOOKS: 

1. Engineering Mechanics of Composite Materials- Isaac and M Daniel, Oxford       Univ. 

Press. 

2. Mechanics of Composite Materials, R. M. Jones, Mc Graw Hill Company, New York. 

3. Composite Materials Science and Engineering, Kishan K. Chawla, Springer. 

4. Analysis of Laminated Composite Structures, L.R. Calcote, Van Nostrand Rainfold, 

New York,  

5. Machanics of Composite Materials and Structures, madhujit Mukhpadhyay, New 

York. 
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FIRST SEMESTER CENTRAL TIME TABLE FOR 2020 -2021 ACADEMIC YEARW.e.f:12.02.2021 

PERIOD   → 
9.30-10.20 10.20-11.10 11.30-12.20 12.20-01.10 02.10-03.00 03.00-03.50 03.50-04.50 

DAY CLASS 

MON 

II-A MOS PYTH T.D MSM NM AARC 

II-B MSM AARC MOS NM T.D PYTH 

II-C NM TD AARC PYTH MOS & MSM LAB 

III-A EEA DEM-I TE DOM TE,D&I & CAD LAB 

III-B MT DOM CAD MM DME-I EEA 

III-C TE TE,D&I & CAD LAB DOM MT EEA 

IV-A OR C/C FEM MCM PM-II / CAM /MP LAB 

IV-B NCES MCM PM-II NCES OR FEM C/C 

IV-C FEM PM-II / CAM / MP LAB NCES C/C 

TUE 

II-A PYTH MOS & MSM LAB BE MSM  MOS 

II-B NM PYTH LAB TD PYTH MSM 

II-C AARC MSM T.D MOS NM TD 

III-A MM MT CAD EEA MT TE DOM 

III-B DME-I TE EEA DOM TE,D&I & CAD LAB 

III-C MT DOM MM DME-I CAD EEA TE 

IV-A C/C MCM OR MCM NCES PM-II RAC 

IV-B OR FEM C/C RAC PM-II / CAM / MP LAB 

IV-C NCES FEM RAC C/C RAC MCM OR 

WED 

II-A NM AARC BE PYTH T.D MOS 

II-B MSM BE T.D MOS PYTH NM 

II-C BE PYTH MOS MSM NM BE AARC 

III-A DOM TE DME-I CAD MT MM EEA 

III-B MM TE,D&I & CAD LAB DOM TE MT 

III-C EEA TE DME-I DOM TE,D&I & CAD LAB 

IV-A RAC PM-II NCES OR MCM FEM C/C 

IV-B FEM PM-II / CAM / MP LAB C/C RAC OR 

IV-C RAC MCM PM-II NCES PM-II / CAM / MP LAB 

THU 

II-A BE MSM NM MOS MOS & MSM LAB 

II-B NM MOS & MSM LAB BE MSM MOS 

II-C MSM PYTH LAB MOS BE PYTH 

III-A TE EEA MM DME-I TE,D&I & CAD LAB 

III-B CAD MT DOM TE EEA DME-I MM 

III-C MM MT CAD DME-I TE MT MM 

IV-A FEM PM-II RAC OR PM-II / CAM / MP LAB 

IV-B RAC C/C MCM NCES OR RAC FEM 

IV-C MCM OR NCES FEM RAC MCM OR 

FRI 

II-A PYTH PYTH LAB MOS MSM PYTH 

II-B Placement & Training NM MSM MOS & MSM LAB 

II-C NM MOS & MSM LAB PYTH MSM MOS 

III-A CAD MM DOM DME-I EEA MT TE 

III-B TE EEA MM MT TE,D&I & CAD LAB 

III-C DOM MM CAD TE EEA DME-I 

IV-A MCM NCES FEM C/C RAC NCES OR 

IV-B PM-II FEM MCM NCES PM-II / CAM / MP LAB 

IV-C C/C OR NCES MCM FEM PM-II FEM 

SAT 

II-A AARC TD MSM NM NM Placement & Training 

II-B MOS BE PYTH AARC PYTH AARC MOS 

II-C Placement & Training MOS MSM TD PYTH NM 

III-A MT  TE,D&I & CAD LAB DOM DME-I MM 

III-B DOM MM DME-I EEA TE MT CAD 

III-C EEA MM MT DOM TE,D&I & CAD LAB 

IV-A NCES PM-II / CAM / MP LAB C/C RAC FEM 

IV-B MCM C/C RAC MCM PM-II OR NCES 

IV-C PM-II C/C RAC OR PM-II, CAM & PM LAB 

II B.Tech: 
NM & PT:Dr. P. Sreedevi(A,B&C) 

Python      : Mr. V. Ravi Kanth(A,B&C) 

MOS          : Dr. G. Venkatesh(A,B&C) 

MSM          : Dr. Syed Altaf Hussain (A),  

Mr.K.Viswanath (B&C) 

TD              : Dr. V. Siva Reddy(A,B&C) 

BE:Dr.Nayab Rasool  (A,B,C)  

AARC        :Mr.Y.Rajaobul Reddy(A,B&C) 

Python Lab: Mr.V.Ravi Kanth(A,B&C) 

MOS Lab: Dr.BSR &Mr.N.U(A) 

Dr. BSR & Mr.Vinrendra (B) 

Dr.YSK Reddy &Dr.G.V(C) 

MSM Lab:Dr.SAH &Mr.Alamgir -     (A)  

Dr. AshifPerwez&Dr.YSKR(B) 

Dr.VCS&Mr.KAN(C) 

 

III B.Tech: 
EEA   : Dr.G.C.Venkataiah (A & B),  

Mrs.K.PushpaLatha (C) 

DME-I: Dr.Syed Altaf Hussain (A) 

Dr.K.SudhaMadhuri (B&C)  

T.E    : Dr.B.Rama Krishna (A&B),  

Mr.John Babu.T (C)  

DOM  : Dr.V.Nageswar Reddy (A&B), 

Mr.B.ChinnaAnkanna (C) 

MM   : Mr.Dinesh Babu.B (A&B), 

Mr. MD.Alamgir (C) 

MT     : Mr.Khaja Gulam Hussain(A&B) 

Dr.Uffaith Hussain Quadri(C) 

CAD  :Mr.Suresh.B (A,B & C) 

D&I LAB: Dr.VNR&Mr.BCA - (A)  

Dr.MAK &Dr.VNR - (B)  

Mr.BCA/KAN[M]/Dr.MAK-(C) TE LAB: 

Dr.BRK & BDB- (A)  

Mr.BDB & Dr.BRK - (B) 

Mr.John Babu/Dr.Razak  -(C) 

CAD LAB: Mr.B.Suresh& Mr.Anees-(A), 

Mr.MD.Anees/Suresh –    (B) 

Mr.MD.Anees/Dr.YSKR –(C) 

IV B.Tech: 
CAD/CAM:Mr.Y.Suresh Babu (A&B),  

Mr.K.Viswanath (C) 

OR    : Mr.K.Aswarthanarayana (A,B&C)  

FEM   : Mr.N.Upendra (A&B), 

Dr.UpendraRajak 

RAC : Dr.V.Chandra Sekhar (A&B), 

Dr. Y. Siva Kumar Reddy (C) 

NCES  : Mr. B.Veerendra (A&B),  

Mr. MD. Alamgir (C) 

MCM  : Dr. M. Ashok Kumar (A&B) 

Mr. B. Chinna Ankanna(C) 

PM-II: Dr. Manoj Panchal (A,B&C) 

CAM LAB:Mr.KGH& YSB - (A) 

Mr.YSB&Dr.KSM- (B) 

Dr.KSM&Mr.KGH- (C) 

PM-II LAB:Dr.ManojPanchal&Dr.Quadri(A)  

Mr.N.Upendra&Dr.Quadri(B) 

Dr.K.Viswanath/Dr.Quadri/ 

Dr.ManojPanchal(C) 

Mini Project:Dr.Ashif Perwez(A,B&C) 
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Our Institution Vision 

 To develop this rural based engineering college into an institute of 
technical education with global standards 

 To become an institute of excellence which contributes to the needs of 
society 

 To inculcate value based education with noble goal of “ Education for peace 

and progress” 

Our Institution Mission 

 To build a world class undergraduate program with all required 
infrastructure that provides strong theoretical knowledge supplemented by 

the state of art skills  
 To establish postgraduate programs in basic and cutting edge technologies. 
 To create conductive ambiance to induce and nurture research  

 To turn young graduates to success oriented entrepreneurs To develop 
linkage with industries to have strong industry institute interaction. 

 To offer demand driven courses to meet the needs of the industry and 
society To inculcate human values and ethos into the education system for 
an all-round development of students. 

Our Institution Quality Policy 

 To improve the teaching and learning 

 To evaluate the performance of students at regular intervals and take 
necessary steps for betterment 

 To establish and develop centers of excellence for research and 
consultancy 

 To prepare students to face the competition in the market globally and 

realize the responsibilities as true citizen to serve the nation and uplift the 
country’s pride. 

Department of Mechanical Engineering Vision 

Vision:  
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To be a center of excellence by offering UG, PG and Research programs in 

cutting edge technologies of Mechanical Engineering in collaboration with 

industries  

 

Department of Mechanical Engineering Mission 

 To Produce Mechanical Engineers who are exceptionally competent, 

disciplined and have a sense of devotion to their profession by adapting 

modern teaching and learning process.  

 To establish modern laboratory facilities to impart quality education in 

association with Industry- Institute interaction.  

 To inculcate research orientation among the student community. 

 

Department of Mechanical Engineering Program Specific Outcomes 

(PSO's) 

1. The graduate will be able to design systems, components or process for 
broadly defined engineering technology problems appropriate to 

programme educational objectives 
2. The graduates will be able to apply modern engineering tools viz., 

CAD/CAM packages for modeling, analysis and predicting simple to 

complex engineering activities with an understanding of the limitations 
3. The graduate will be able to apply oral and graphical communication in 

both technical and non-technical environment 
4. The graduate will be able to engage in self directed continuing 

professional development and have a strong commitment to address 

ethical and professional responsibilities. 

 

Department of Mechanical Engineering Program Educational objectives 

(PEO's) 

1. To apply modern computational, analytical, simulation tools and 

techniques to address the challenges faced in mechanical and allied 
engineering streams. 

2. To Plan, design, construct, maintain and improve mechanical 

engineering systems that are technically sound, economically feasible 
and socially acceptable to enhance quality of life. 
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3. To Exhibit professionalism, ethical attitude, team spirit and pursue 
lifelong learning to achieve career and organizational goals 

4. To communicate effectively using innovative tools and demonstrates 
leadership & entrepreneurial skills. 

Department of Mechanical Engineering Program Outcomes (PO's) - 

Engineering Graduates will be able to: 

1. Engineering knowledge: Apply the knowledge of mathematics, science, 

engineering fundamentals, and an engineering specialization to the 
solution of complex engineering problems. 

2. Problem analysis: Identify, formulate, review research literature, and 
analyze complex engineering problems reaching substantiated 
conclusions using first principles of mathematics, natural sciences, and 

engineering sciences. 
3. Design/development of solutions: Design solutions for complex 

engineering problems and design system components or processes that 
meet the specified needs with appropriate consideration for the public 
health and safety, and the cultural, societal, and environmental 

considerations. 
4. Conduct investigations of complex problems: Use research-based 

knowledge and research methods including design of experiments, 

analysis and interpretation of data, and synthesis of the information to 
provide valid conclusions. 

5. Modern tool usage: Create, select, and apply appropriate techniques, 
resources, and modern engineering and IT tools including prediction and 
modelling to complex engineering activities with an understanding of the 

limitations. 
6. The engineer and society: Apply reasoning informed by the contextual 

knowledge to assess societal, health, safety, legal and cultural issues and 
the consequent responsibilities relevant to the professional engineering 
practice. 

7. Environment and sustainability: Understand the impact of the 
professional engineering solutions in societal and environmental 
contexts, and demonstrate the knowledge of, and need for sustainable 

development. 
8. Ethics: Apply ethical principles and commit to professional ethics and 

responsibilities and norms of the engineering practice. 
9. Individual and team work: Function effectively as an individual, and as a 

member or leader in diverse teams, and in multidisciplinary settings. 
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10. Communication: Communicate effectively on complex engineering 
activities with the engineering community and with society at large, such 

as, being able to comprehend and write effective reports and design 
documentation, make effective presentations, and give and receive clear 
instructions. 

11. Project management and finance: Demonstrate knowledge and 
understanding of the engineering and management principles and apply 

these to one’s own work, as a member and leader in a team, to manage 
projects and in multidisciplinary environments. 

12. Life-long learning: Recognize the need for, and have the 

preparation and ability to engage in independent and life-long learning in 
the broadest context of technological change. 
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Lesson Plan 

NAME OF THE FACULTY: Dr. M.ASHOK KUMAR                            ACADEMIC YEAR: 2020-2021 

CLASS/SEM: IV B.TECH/ISEM                    TOTAL HOURS:  50 

NAME OF THE SUBJECT: [A0338158] MECHANICS OF COMPOSITE MATERIALS 

 

S.No DATE TOPIC HOURS REMARKS 

 Introduction to Composite Materials: 

Classification: Polymer Matrix Composites 

(PMCs),  matrix materials,reinforcements used in 

PMCs 

Metal Matrix Composites(MMCs) 

Ceramic Matrix Composites(CMCs) 

Carbon–Carbon  Matrix Composites (CCMCs), 

Fiber 

Reinforced Composites 

 

 

 

7 

 

 

 

 

 

 

 

         I 

 nature-made composites, and applications 

Reinforcements: Fibres, characteristics 

Glass Fiber, types 

Silica fiber 

 Kevlar fiber 

Carbon fiber 

Boron fiber 

Boron carbide fiber, silicon carbide fiber. 

Particulate composites 

 

 

 

 

10 

 

 

 

 

 

 

 

            II 

  Introduction to Manufacturing Processes:,  

Hand lay-up 

Spray lay-up, 

 Vacuum bagging, 

Pultrusion, 

9  
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Resin Transfer Molding (RTM), 

Filament winding 

          III 

27 

28 

29 

30 

Macro-Mechanical Analysis of a Lamina: 

Introduction, 

Definitions: Stress, Strain, Elastic Moduli, Strain 

Energy. 

Hooke‟s Law for Different Types of Materials – 

Anisotropic material, monoclinic material and 

orthotropic material, 

Hooke‟s Law for a Two Dimensional 

Unidirectional Lamina - Plane Stress Assumption, 

Reduction of Hooke‟s Law in Three Dimensions to 

Two Dimensions, 

Relationship of Compliance and Stiffness Matrix 

to Engineering Elastic Constants of a Lamina,  

Angle Lamina 

Problems 

Problems 

 

 

 

 

 

12 

 

 

 

 

 

          IV 

 Hooke‟s Law for a Two-Dimensional Angle 

Lamina 

Engineering Constants of an Angle Lamina, 

Invariant Form of Stiffness and Compliance 

Matrices for an Angle Lamina, 

Strength Failure theories of an angle lamina- 

Maximum stress Failure Theory, Tsai–Hill Failure 

Theory, Tsai–Wu Failure Theory. 

  

 

 

           V 
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Micro-Mechanical Analysis of a Lamina: 

Introduction, Volume and Mass Fractions, 

Density, and Void Content, 

Evaluation of the Four Elastic Moduli – 

Longitudinal young’s modulus, Transverse 

young’s modulus, Major Poisson’s ratio and In-

plane shear modulus by Strength of Materials 

Approach, 

Semi Empirical Models, Ultimate Strengths of a 

Unidirectional Lamina- Longitudinal tensile 

strength,  

Transverse tensile strength, Longitudinal 

compressive strength, Transverse compressive 

strength. In-Plane shear strength 

 

 

 

 

         VI 

 

 

Signature of faculty         HSME 
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Lecture Plan 

NAME OF THE FACULTY: Dr. M.ASHOK KUMAR                            ACADEMIC YEAR: 2020-2021 

CLASS/SEM: IV B.TECH/ISEM                  TOTAL HOURS:  50 

NAME OF THE SUBJECT: [A0338158] MECHANICS OF COMPOSITE MATERIALS 

 

S.No DATE TOPIC HOURS REMARKS 

1  Introduction to Composite Materials: 1  

 

 

 

 

 

 

         I 

2  Classification: Polymer Matrix 

Composites (PMCs),  matrix 

materials,reinforcements used in PMCs 

1 

3  Metal Matrix Composites(MMCs) 1 

4  Ceramic Matrix Composites(CMCs) 2 

5  Carbon–Carbon  Matrix Composites 

(CCMCs), Fiber 

1 

6  Reinforced Composites 1 

7  nature-made composites, and 

applications 

1 

8  Reinforcements: Fibres, characteristics 1  

 

 

 

 

 

 

            II 

9  Glass Fiber, types 1 

10  Silica fiber 2 

11   Kevlar fiber 2 

12  Carbon fiber 1 

13  Boron fiber 1 

14  Boron carbide fiber, silicon carbide 

fiber. Particulate composites 

1 

15   Introduction to Manufacturing 

Processes:,  

2  

16  Hand lay-up 1 

17  Spray lay-up, 1  

 18   Vacuum bagging, 1 
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19  Pultrusion, 1  

 

          III 

20  Resin Transfer Molding (RTM), 2 

21  Filament winding 1 

22  Macro-Mechanical Analysis of a 

Lamina: Introduction, 

2  

 

 

 

 

          IV 

23  Definitions: Stress, Strain, Elastic 

Moduli, Strain Energy. 

2 

24  Hooke‟s Law for Different Types of 

Materials – Anisotropic material, 

monoclinic material and orthotropic 

material, 

1 

25  Hooke‟s Law for a Two Dimensional 

Unidirectional Lamina - Plane Stress 

Assumption, 

1 

26  Reduction of Hooke‟s Law in Three 

Dimensions to Two Dimensions, 

2 

27  Relationship of Compliance and 

Stiffness Matrix to Engineering Elastic 

Constants of a Lamina,  

1 

28  Angle Lamina 1 

29  Problems 1 

30  Problems 1 

31  Hooke‟s Law for a Two-Dimensional 

Angle Lamina 

1  

 

 

           V 

32  Engineering Constants of an Angle 

Lamina, 

1 

33  Invariant Form of Stiffness and 

Compliance Matrices for an Angle 

Lamina, 

2 
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34  Strength Failure theories of an angle 

lamina- 

2 

35  Maximum stress Failure Theory, Tsai–

Hill Failure Theory, Tsai–Wu Failure 

Theory. 

1  

 

 

 

 

         VI 

36  Micro-Mechanical Analysis of a 

Lamina: 

1 

37  Introduction, Volume and Mass 

Fractions, Density, and Void Content, 

1 

38  Evaluation of the Four Elastic Moduli – 

Longitudinal young’s modulus, 

Transverse young’s modulus, Major 

Poisson’s ratio and In-plane shear 

modulus by Strength of Materials 

Approach, 

1 

39  Semi Empirical Models, Ultimate 

Strengths of a Unidirectional Lamina- 

Longitudinal tensile strength,  

2 

40  Transverse tensile strength, 

Longitudinal compressive strength, 

Transverse compressive strength. In-

Plane shear strength 

2 

 

Signature of faculty         HSME 

 



 

 

 

UNIT-I 



Contents

 Introductions

 Classifications

 Polymer Matrix Composites

 Metal Matrix Composites

 Ceramic Matrix Composites

 Carbon-Carbon Composites

 Fibre

 Reinforced Composites 

 Nature-made Composites

 Applications































Factors influence the performance

processing method

Impact Resistance

Delamination

Interphase

Fiber Orientation

Properties Of Raw Materials



Branches of composites
Hybrid Composites

Nanocomposites

Blended Composites

Blended Nanocomposites

Hybrid Fiber Reinforced Composites

Laminated Composites

Particulate Composites



Factors affecting the composites

Properties Of Constituents

 Shape Of The Fiber

 Geometry Of The Fiber

 Cross Sectional Area Of The Fiber

 Manufacturing Method

 Time Of Mixing

 Interface Between The Constituents

 Processing Temp

 Fiber distribution and orientation



Polymer matrix Composites (PMCs)

 It is a multi phase material.

‘Poly’ means many and ‘mers’ means units

 polymer is a large molecule prepared by many repeated subunits.

 Prepared by long and short  continuous fibers     bound together by polymer 

matrix.

 These yield superior strength and stiffness.

 Three types of polymers are used such as 

Thermoplastics,  (high processing temp.)

Thermosets, and (less processing temp.)

Elastomers (i.e. rubber).

Both synthetic and natural fibers can also be used as a reinforcements

Glass fibers, Kevlar fibers,  carbon fibers, aramid fibers are some of the 

synthetic fibers.

 Reinforcement is in discontinuous phase and matrix in in continuos phase.



Majority of polymers are made by petroleum based products. 

 Polymers are made by chemical reaction by bonding of monomers by 

polymerization. Some polymers are made by organism.

 Proteins have polypeptide molecules  which are natural polymers made from 

various amino-acids monomer unit.

 Fiber length with less diameter imparts more mechanical strength rather than width.

 these PMCs do not need any furnace to produce.

 Temperature resistance of these polymers are up to 250ºC.

 Continuous fibers(  glass, carbon, aramid, basalt or polymer fibers), chopped 

fibers( chopped CFs and chopped GFs), woven fabric fibers are fibers  available 

commercially.

 Degree off polymerization is depends on the how many no of units in the chain.

 Thermoplastics- addition polymerization, thermo-sets- condensation polymerization



Nanofillers ( also called nanocomposites)

 Carbon nanotubes

 Exfoliated clay  platelets

 Carbon black nanoparticles

Length is less than 0.5 microns (i.e.500 

nanometers)

Dramatic Improvements

increased modulus

Strength, dimensional stability, thermal stability, 

electrical conductivity, flame retardency, 

chemical resistance, optical clarity, decreased 

gas water, oil permeability, surface appearance.



Classifications of polymers
 Linear Polymers

• molecules are in the form of chains.

 Thermoplastic Polymers

• molecules are linear or branched but not inter

connected

 Thermoset Polymers

• polymers are heavily cross linked to produce

strong 3D network structures.

 Elastomers

• lightly cross linked and its elastic deformation

is >200%



Advantages of PMCs

Light weight 

High strength and stiffness

High impact resistance

Good Corrosion resistance

Good abrasion and wear resistance

Disadvantages

Environmental degradation

Moisture absorption causes swelling

Thermal mismatch between the fiber and matrix. Due to’α’’  and causes debonding.

Low working temperature

Sensitive to radiation

Applications

Medical field

MRI scanners, X-ray couches, C-scanners, mammography plates, tables, surgical 

target tools, wheel chairs, prosthetics. etc

Transportation vehicles

Automotive:

belts, seats, hoses, sports cars (Bugatti uses CF to construct the body of the  car), 

fuel tanks,  mirror  and light housing,  engine parts, body panels, wind screen 

glasses, ultra-protective coatings for paintworks.



Aerospace Vehicles: tires, interiors,fuselages, rudders,

windows,

Marine Ships: fishing boats, ships

Personal protective equipments:

fire fighters, while facing the deadly weapons

Others:

industrial equipments, foot wear, packaging, building,

construction and civil Engg( impellers, blades, housing

and covers), power tool housings, lawn mover hoods,

mobile phones, Energy storage devices( batteries)



Metal Matrix Composites

Conventional materials have some limitations in

achieving the good combination of strength,

stiffness, toughness, and low density.

So these shortcomings are overcome.

 MMCs posses significantly improved properties

 such as

high specific strength,

high specific modulus,

high damping capacity, and

high wear resistance.



















Particulate composites

 These provide reinforcement, 

improves conductivity,  improves operating temp., 

oxidation resistance,

cost to the matrix

 Combination of matrix and reinforcement can provide us very special material

 Nanoparticles saves  material and also improves strength.

 Usually isotropic  because particles are added randomly

 Size of the particles is <0.25 microns

 Ex: chopped fibers, platelets, hollow spheres, nan-oclay, carbon nanotubes,

 Traditional manufacturing methods such as injection moulding reduces the cost.

 Al-alloys with sic particle dispersed  are widely used for piston and brake applications.

 carbon or ceramic particulates  used for brakes

 Applications:

 cutting tools

 automotive parts, brakes

Computer housings

 cell phone casings

 office furniture

 helmets

 toys













 INTRODUCTIONS

 Examples of naturally found composites.

 Examples include wood, where the lignin matrix is reinforced with cellulose 

fibers and bones in which the bone-salt plates made of calcium and phosphate 

ions reinforce soft collagen.

 What are advanced composites?

 Advanced composites are composite materials that are traditionally used in

the aerospace industries. These composites have high performance

reinforcements of a thin diameter in a matrix material such as epoxy and

aluminum. Examples are graphite/epoxy, Kevlar®†/epoxy, and boron/

aluminum composites. These materials have now found applications in

commercial industries as well.



 CLASSIFICATION

 How are composites classified?

 Composites are classified by the geometry of the reinforcement 

 Particulate

 Flake 

 Fibers  

 Composites are classified by the type of matrix 

 Polymer

 Metal

 Ceramic

 Carbon.











 Polymers are classified as thermosets and thermoplastics. What is the 

difference between the two? Give some examples of both.

 Thermoset polymers are insoluble and infusible after cure because the chains are

rigidly joined with strong covalent bonds; thermoplastics are formable at high

temperatures and pressure because the bonds are weak and of the van der Waals

type. Typical examples of thermoset include epoxies, polyesters, phenolics, and

polyamide; typical examples of thermoplastics include polyethylene, polystyrene,

polyether–ether–ketone (PEEK), and poly phenylene sulfide (PPS). The

differences between thermosets and thermoplastics are given in the following

table



 What are prepregs?

 Prepregs are a ready-made tape composed of fibers in a polymer matrix (Figure

1.13). They are available in standard widths from 3 to 50 in. (76 to 1270 mm).

Depending on whether the polymer matrix is thermoset or thermoplastic, the tape

is stored in a refrigerator or at room temperature, respectively. One can lay these

tapes manually or mechanically at various orientations to make a composite

structure. Vacuum bagging and curing under high pressures and temperatures may

follow



 Figure 1.14 shows the schematic of how a prepreg is made. A row of fibers is

passed through a resin bath. The resin-impregnated fibers are then heated to

advance the curing reaction from A-stage to the B-stage. A release film is now

wound over a take-up roll and backed with a release film. The release film keeps

the prepregs from sticking to each other during storage



FIGURE 1.28

Schematic of diffusion bonding for metal 

matrix composites. 

FIGURE 1.29

Boron/aluminum component made from 

diffusion bonding.







 ally a laminate structure made of various laminas stacked on each other. Knowing 

the macromechanics of a single lamina, one develops the macromechanics of a 

laminate. Stiffness, strengths, and thermal and moisture expansion coefficients can 

be found for the whole laminate.

 Laminate failure is based on stresses and application of failure theories to each ply. 

This knowledge of analysis of composites can then eventually form the basis for the 

mechanical design of structures made of composites. 

FIGURE 1.35

Schematic of analysis of laminated 

composites.



 Carbon-Carbon composite is a carbon fiber reinforced carbon 

matrix composite. 

Carbon-Carbon matrix composite (CCMCs)

 It is a two-phase composite material and as the name implies, 

both the matrix and reinforcement fiber are carbon. 

 Carbon-Carbon can be tailor-made to give a wide variety of products 

by controlling the choice of fiber-type, fiber presentation and the 

matrix.

 Compared to other materials such as graphite, ceramics, metal, 

and plastic, it is lightweight and strong and can withstand 

temperatures over 2000℃ without any loss in performance. 













































Matrix and reinforcements in composites
PMCs

Matrix materials

Thermoplastics: Polyethylene, polystyrene, polycarbonate, polypropylene, 

nylon, Acryl butadiene styrene (ABS), Acetals etc

Thermo-sets: epoxy, polyester, polyurethanes, silicones, phenolics etc

Reinforcements: Glass fibers, carbon fiber, Kevlar fibers, aramid fibers are 

some synthetic materials.

Coir fibers, jute fibers, sisal fibers, banana fibers, bamboo fibers are some 

natural fibers etc

Elastomers: 

matrix:  rubber materials

Reinforcements: metal wires

MMCs

Matrix materials: Aluminum, magnesium, Titanium, cobalt, nickel etc

Reinforcements: Alumina, boron carbide, titanium carbide, boron etc

CMCs

Matrix materials: alumina(oxide form), SiC( non oxide form)

Reinforcements: SiC( whiskers), Titanium Boride (TiB2) Aluminum 

Nitride(AlN) Zirconium oxide(ZrO2) etc

CCMCs

Matrix material: Carbon   

Reinforcement: Carbon /graphite fiber



Applications of composites

Aerospace
gliders

helicopter blades

transmission shafts

elevators

spoilers( aerodynamic 

device)

rocket boosters

nozzles

antenna covers

fuselages

Doors/sears

food trays

rudders (tail)

Automobiles
leaf springs

car seats & bumpers

body components 

Chassis 

engine components

Fuel tanks

tire guards

window frames

front grills

Engine bonnet

mud guards

lamp heads & housings

cabins

Instrument  panels

cabins

light housings

radiator fans

Marine
fishing boats

life boats

anti marine ships

rescue crafts

hover craft

yachts

naval ships

hulls

Decks

bulk heads

masts propulsion shafts



Sport goods
fishing rods

hockey sticks

arrows

javelins

base ball bats

helmets

exercise 

equipment

shoe soles and 

heels

golf rackets

pole vault poles

Applications of composites

Elec./ 

Electronics
Switches 

Wires

Optical fibers

circuits

Mother boards

sinks

semiconductors

Industrial
Reactors

boiling tubs

tanks

Distillation columns

cooling towers

Construction
window frames

bath room panels

cladding panels

house furniture

roofing panels

pipes and ducts

swimming pools

diving boards

door panels

over head tanks

POP ceiling

pipe lines

flooring



 

 

 

UNIT-II 



Types of fibers

Natural fibers Man made fibers

Mineral fibers Vegetable fibers
Animal fibers

Regenerated fibers

synthetic fibers



Fiber characteristics

• extremely thin and flexible

• one dimension (l>d)

• high modulus and strength

• better default properties

• lateral dimn. Should be in microns

• fiber should be stronger than matrix

• High aspect ration



SILICA FIBER

Introduction
1. Silica fibers are fibers made of sodium silicate ( water glass )

2. They can be made such that they are substantially free from non- alkali metal 
compounds.

3. They are used in heat protection (including asbestos substitution) and in 
packings and compensators.

4. silica fiber used as a reinforcing the material and yet wet webs and filter 
linings.

5. Silica fibers are used as a Optical Fibers Optical fiber is used as a medium 
for telecommunication and computer networking because it is flexible and 
can be bundled as cables. It is especially advantageous for long-distance 
communications, because infrared light propagates through the fiber with 
much lower attenuation compared to electricity in electrical cables.

6. strength can be further improved by providing the polymer jackets.



Characteristics

• Superb transparency
• good purity,ρ=2.61g/cc
• heat resistance as high as 1700ᵒC
• Excellent chemical inertness
• A silica fiber has an amazingly high mechanical 

strength against pulling and even bending, 
provided that the fiber is not too thick.

• Silica glass can be doped with various materials in 
order to improve various properties.

• Silica has a high damage threshold.



SILICA FIBER

Applications

Applications in rockets, spacecrafts, missiles, 
heat-fire resistant equipments.

Pressure control devices, expansion joints to 
reduce heat, counterbalancing the destability, 
friction lining materials



Glass fibers

• glass fibre is material consisting of numerous 
extremely fin fibers of glass.

• it is cheaper and significantly less brittle 
material.

• used as a reinforcing material in polymer 
matrix composites



Types of glass fibers

• E-glass fiber:  E stands for electrical application,most common type 
of glass fiber ( alumino- borosilicate glass with less than 1% alkali 
oxide), mainly usd for glass reinforced plastics

• D-glass fiber: D stands for dielectric suitable for low dielectric 
constants. (borosilicate glass with less th)

• S-glass fiber: S stands for  strength(tensile)(alumino silicate glass 
without CaO but with high MgO content)

• C-glass fiber: C stands for chemical resistance,  used for  insulation 
purpose.( alkali lime glass with high boron oxide content)

• E-CR glass fiber: E-CR stands for electrical and chemical resistance.( 
It has alumino lime silicate with less than 1% alakli oxide.

• A-glass fiber: A stands for alkali resistance.



characteristics

• resistance to attack of most of the chemicals.

• it has comparable mechanical properties with  
carbon fiber.

• it is a durable and light weight material



Properties

• High tensile strength
• High dimensional stability
• High heat resistance.
• Good thermal conductivity
• Great fire resistance.
• Good chemical resistance.
• Outstanding electrical properties
• Dielectric permeability
• compatible  with matrix materials
• great durability
• non-totting
• highly economical



Disadvantages

• inhale causes lung disease



Applications

• rocket bodies

• exhaust nozzles

• heat shields

• wall panels

• fishing rods

• insulators

• rinforcements



Boron fibre
• Introduction
• It is also called hybrid boron fiber.
• First introduced in the year of 1959.
• Chemical vapor deposition (CVD) deposition 

process is used to produce these fibers.
• in CVD process material is deposited on a thin 

filament.
• It is fine, dense deposited material which 

determines the strength and modulus of fiber.
• in CVD process boron tri-chlorides are mixed 

with the hydrogen.



Boron fiber

• Tensile strength (3600MPa)

• Tensile modulus (400GPa)

• compressive strength(6900MPa)

• Fracture strength (17GPa)

• α= 4.5ppm/ᵒC

• ᵨ=2.57 g/cm3

• Φ = 142µm



Boron fiber

• ceramic monofilaments used in complex helical 
structures.

• fiber dia. Ranges from 33-400µm

• Thermal expansion would mismatch boron and tungsten.

• Boron is a brittle material hence for large diameters results less flexibility

• If boron is coated on SiC fiber and B4C fiber ,then 
it protects the surface.

• it exibits linear axial stress strain relationship 
upto650ᵒC

• it strong in both tension and compression



Applications

• Bicycle frames

• sports goods

• fishing rods

• space shuttle

• Air craft repairs



Kevlar fiber
• It is widely used fiber in combination with GF/CF 

• it is formed by hydrogen bonds between the polymer 
chains.

• looks like a long twisted coil.

• yellowish color.

• Strong and heat resistant

• strength is intact at cryogenic temp. -196ᵒC

• At higher temps. Strength is reduced( Ex: at 160ᵒC 10% 
TS is reduced and also 260ᵒC 50% TS is reduced.

• High shear strength,ρ=1.44 g/cc, TS =3600MPa

• production is similar to nylon fiber



Applications

• bullet proof vests

• bicycle tires

• racing sails

• personal armors

• Helicopter rotor blades

• combat helmets

• racing car bodies

• field hockey bats



Boron Carbide fiber (B4C)

• color is dark grey
• extremely hard ceramic material 
• boron-carbon are made with covalent bonds
• Vickers hardness is greater than 30GPa
• it is 3ed hardest material after diamond and boron nitride.
• Ρ=2.52g/cc, E=460GPa, Hardness=38GPa, fracture 

toughness =3.5MPa/sq.m
• high performance abrasive material
• flexural strength is more than 400Mpa
• B2O3 +7C          B4C+6CO
• B2O3 boron trichloride



drawbacks

• low thermal conductivity

• susceptible to thermal shock failure.

• extremely brittle



applications

• Nuclear reactors

• MMCs

• solid fuel-Ramjets

• brake lining materials

• armor plating

• cutting tools and dies

• abrasives

• nozzles for slurry pumping



Carbon fiber

 carbon fibers are bonded together to form a long 
chain

 produced from Poly-acrylonitrile (PAN) or pitch.

 5X stronger  and 2X stiffer than steel

2.33X lesser in weight



Advantages
 High tensile strength

 high extension at break

 High modulus

 good electrical conductivity

Low α

 low ρ

 high wear resistance

 long working life

 compressive strength is greater than all fibers

 properties are better than other metals

 Insensitive to temperature

 density is lesser than  steel



DISADVANTAGES

 Costly
 it causes lung cancer

APPLICATIONS

 Rackets
 golf sticks
Automotive body parts
mobile cases
 recharge batteries
 fuel cells
Portable power banks
music instruments



Silicon Carbide Fiber

SiC is a simple compound with carbon atoms attached to silicon through triple 
bond, leaving both atoms with +ve and –ve charge. 

‘Si’ is metalloid and the ‘carbon’ is non-metal and properties formed between 
the metals and nonmetals.

 It is used as a  reinforcing/abrasive/ ceramics  material 

the grains of SiC can be bonded together by sintering to form very hard 
material.

 it is a ceramic material widely used in applications require high endurance.

 SiC has diamond like tetrahedral crystal structure formed by covalent bonds

 Just like carbon does in diamond

 It exists in crystalline form.

SiO2+3C                     SiC+2CO at temp 1600ᵒC-2500ᵒC



Properties of SiC

• Low density
• high strength and stiffness
• Lowα
• High thermal conductivity
• High hardness
• High elastic modulus
• High thermal shock resistance
• high chemical inertness
• It irritates eyes,skin



Applications of SiC

• Wear resistance parts for pumps and rockets engines
• LEDs and semiconductors
• car clutches
• car brakes
• refractory lining
• gas flow liners
• bearings
• turbine parts
• heat exchangers
• Grinding wheels
• Jewelry
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PROCESSING  OF POLYMER 
MATRIX COMPOSITES (PMCs)

BY
Dr.M.ASHOK KUMAR

PROFESSOR OF MECHANICAL ENGINEERING
RGM COLLEGE OF ENGG. & TECHNOLOGY,NANDYAL-518501,AP



TYPES OF MANUFACTURING 
PROCESSES

• HAND LAY UP

• SPRAY LAYUP

• VACUUM BAGGING 

• PULTRUSION

• RESIN TRANSFER MOULDING

• FILAMENT WINDING

• AUTOCLAVE MOULDING



HANDLAY UP PROCCESS

• Composites are made manually.
• It is a slow process and labor consuming
• The largest number of reinforced plastics composite products 

are produced by the hand lay-up process.
• Mat  type or woven/ fabric fiber type fibers are used.
• Mould is prepared based on the final shape of the product.
• Catalyzed resin is used as a matrix which is made up of resin 

and catalyst.
• Catalyzed resin is prepared based on the stoichiometric ratio s 

of both.
• Mould is open.
• We get one side only smooth surface.
• Brush and rollers are used  in this process.
• Curing is done at room temp.
• post curing parts are removed after keeping some time in the 

furnace to ensure mould releasing agent to melt.



Fabrication steps

• Mould is coated with mould releasing 
agent for easy removal of mould after 
curing.

• Then mould is coated with gel coat to give 
coloring purpose.

• Fiber fabrics are cut into desired shapes 
and then stacked into the mould all over.

• pour the some amount of catalyzed resin 
all over the mould  and further we have to 
spread it all over the mould with brush and 
roller to ensure wetting.

• We have to add another layer of fiber to 
be spread all over the mould and then 
poured some more amount of fiber into 
the mould.

• We have to put fiber layer  plus resin layer 
alternatively until we get desired thickness. 

• we have to finish this process  before resin 
starts gelling.



Advantages Disadvantages

Only 30% of the fiber can 
be stacked.
Emission due to open 
mould
 air entrapment makes air 
bubbles formation.



SPRAY LAY UP PROCESS

• Continuous strand glass roving and initiated resin are then fed through a
chopper gun, which deposits the resin-saturated “chop” on the mold.

• This is  done by spray gun.
• mould is open mould releasing agent and gel coat is applied before  

streaming the fiber and resin.
• Here chopped fibers are used where as In hand lay up mat are used as a 

fibers
• Spray gun  injects chopped fiber catalyzed resin  on to the  mould surface 

with  HP jet.
• Fibers are cut into 25 to 50mm length with the help of adjustable blade in 

the gun.
• this process is good for automation for high rate of production.
• mechanical properties are moderate due to the not using of continuous 

fibers.



1. MRA and gel coats are applied.
2. With the help of the gun chopped 

fibers and resin are injected on to the 
mould surface directly.

3. chopped fibers are dressed in proper 
shape and placed all over the mould  
to impart desired thickness. This has to 
be done manually.

4. to reduce defects resin is spread 
uniformly  to ensure bonding between 
the fiber and matrix.

5. We have to do continuously until we 
get completed the entire mould with 
desired thickness.

6. then  allow  some time for curing. We 
should remove the casting from the 
mould.

Fabrication steps



Advantages and disadvantages of spray lay up



applications

boats, tanks, transportation components, and tub/shower 
units in a large variety of shapes and sizes.





vacuum bagging process 

vacuum bagging process utilizes a flexible and 
transparent film (ie: fabric, nylon, rubberized 
sheet or plastic) in order to fully enclose and 
compacting the wet laminate by using 
atmospheric pressure. this process is also 
called vacuum bagging.
It uses a vacuum and pump to extract the air 
from inside the vacuum bag and compress the 
part under atmospheric pressure in order for 
the compacting and hardening process to take 
place. 
vacuum bagging is an upgrade of the wet lay-
up process and is widely spread in the 
composite industry because of its clear 
benefits over this method. 

you will most often see the use of fiberglass, 
carbon fiber and resin materials being 
laminated together using the vacuum bag 
technique.



Benefits 
Finished product will yield a better strength 
rating and be lighter. 
Parts that are stronger yet lighter 
the ratio of glass to resin which is better 
accomplished. 
materials for basic parts are inexpensive and 
easily obtained.



Disadvantages
Applied vacuum pressure then removes excess resin; however the amount removed will depend 
on multiple different and critical variables that may be hard to control.
Removing excess resin, which was first brought in, is a clear waste of money and resources.
In larger projects, it is also necessary to apply the vacuum bagging process a couple of times since 
the resin pot-life is the limiting factor.
The amount of resin that is removed from part to part can also vary substantially depending on 
the timing of the vacuum pressure being applied.
The process of bagging can become rushed opening up the opportunity for error if a leak in the 
vacuum seal occurs and cannot be immediately located.

Unfortunately with bagging, the fiber to volume ratio cannot be successfully calculated as it can 
with other processes, and over-bleeding or dry laminates can be a large concern.
Bigger and more complex lay-ups also require additional helpers, increasing labor needs and 
support.
Another imminent disadvantage with hand-lay-up and bagging is that the process must be 
completed once started, with no option to pause or take a step back.
There is a clear time and forgiveness disadvantage in wetting-out and squeegee processes with a 
race against the resin pot-life and getting all of the materials in place.





















Applications of filament winding:

hollow and circular or oval
sectioned components, such as
pipes and tanks.
Pressure vessels, pipes and drive
shafts.
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2

 

Macromechanical Analysis of a Lamina

 

Chapter Objectives

 

• Review definitions of stress, strain, elastic moduli, and strain energy.
• Develop stress–strain relationships for different types of materials.
• Develop stress–strain relationships for a unidirectional/bidirec-

tional lamina.
• Find the engineering constants of a unidirectional/bidirectional lam-

ina in terms of the stiffness and compliance parameters of the lamina.
• Develop stress–strain relationships, elastic moduli, strengths, and

thermal and moisture expansion coefficients of an angle ply based
on those of a unidirectional/bidirectional lamina and the angle of
the ply.

 

2.1 Introduction

 

A lamina is a thin layer of a composite material that is generally of a thickness
on the order of 0.005 in. (0.125 mm). A laminate is constructed by stacking
a number of such laminae in the direction of the lamina thickness (Figure
2.1). Mechanical structures made of these laminates, such as a leaf spring
suspension system in an automobile, are subjected to various loads, such as
bending and twisting. The design and analysis of such laminated structures
demands knowledge of the stresses and strains in the laminate. Also, design
tools, such as failure theories, stiffness models, and optimization algorithms,
need the values of these laminate stresses and strains.

However, the building blocks of a laminate are single lamina, so under-
standing the mechanical analysis of a lamina precedes understanding that
of a laminate. A lamina is unlike an isotropic homogeneous material. For
example, if the lamina is made of isotropic homogeneous fibers and an

 

1343_book.fm  Page 61  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



 

62

 

Mechanics of Composite Materials, Second Edition

 

isotropic homogeneous matrix, the stiffness of the lamina varies from point
to point depending on whether the point is in the fiber, the matrix, or the
fiber–matrix interface. Accounting for these variations will make any kind
of mechanical modeling of the lamina very complicated. For this reason, the
macromechanical analysis of a lamina is based on average properties and
considering the lamina to be homogeneous. Methods to find these average
properties based on the individual mechanical properties of the fiber and
the matrix, as well as the content, packing geometry, and shape of fibers are
discussed in Chapter 3.

Even with the homogenization of a lamina, the mechanical behavior is still
different from that of a homogeneous isotropic material. For example, take
a square plate of length and width 

 

w

 

 and thickness 

 

t

 

 out of a large isotropic
plate of thickness 

 

t

 

 (Figure 2.2) and conduct the following experiments. 

 

Case A

 

: Subject the square plate to a pure normal load 

 

P

 

 in direction 1.
Measure the normal deformations in directions 1 and 2, 

 

δ

 

1

 

A

 

 and 

 

δ

 

2

 

A

 

,
respectively.

 

Case B

 

: Apply the same pure normal load 

 

P

 

 as in case A, but now in
direction 2. Measure the normal deformations in directions 1 and 2,

 

δ

 

1

 

B

 

 and 

 

δ

 

2

 

B

 

, respectively.

Note that

(2.1a,b)

However, taking a unidirectional square plate (Figure 2.3) of the same
dimensions 

 

w

 

 

 

×

 

 

 

w

 

 

 

×

 

 

 

t

 

 out of a large composite lamina of thickness 

 

t

 

 and
conducting the same case A and B experiments, note that the deformations

 

FIGURE 2.1

 

Typical laminate made of three laminae.

Fiber cross-section Matrix material

1A 2B

2A 1B

=

=

δ δ

δ δ

,

.
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(2.2a,b)

because the stiffness of the unidirectional lamina in the direction of fibers is
much larger than the stiffness in the direction perpendicular to the fibers.
Thus, the mechanical characterization of a unidirectional lamina will require
more parameters than it will for an isotropic lamina. 

Also, note that if the square plate (Figure 2.4) taken out of the lamina has
fibers at an angle to the sides of the square plate, the deformations will be
different for different angles. In fact, the square plate would not only have

 

FIGURE 2.2

 

Deformation of square plate taken from an isotropic plate under normal loads.

w

2
w

1

t

t

w

w

w

Undeformed state

Deformed state

Undeformed state

w + δ2A

w + δ1A

p p

w + δ2B

w + δ1B

w

Case A Case B

p

p
Deformed state

1A 2B

2A 1B

δ δ

δ δ

≠

≠

,

.

 

1343_book.fm  Page 63  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



 

64

 

Mechanics of Composite Materials, Second Edition

 

deformations in the normal directions but would also distort. This suggests
that the mechanical characterization of an angle lamina is further complicated.

Mechanical characterization of materials generally requires costly and
time-consuming experimentation and/or theoretical modeling. Therefore,
the goal is to find the minimum number of parameters required for the
mechanical characterization of a lamina.

Also, a composite laminate may be subjected to a temperature change and
may absorb moisture during processing and operation. These changes in
temperature and moisture result in residual stresses and strains in the lam-
inate. The calculation of these stresses and strains in a laminate depends on
the response of each lamina to these two environmental parameters. In this
chapter, the stress–strain relationships based on temperature change and
moisture content will also be developed for a single lamina. The effects of
temperature and moisture on a laminate are discussed later in Chapter 4.

 

FIGURE 2.3

 

Deformation of a square plate taken from a unidirectional lamina with fibers at zero angle
under normal loads.
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2.2 Review of Definitions

 

2.2.1 Stress

 

A mechanical structure takes external forces, which act upon a body as
surface forces (for example, bending a stick) and body forces (for example,
the weight of a standing vertical telephone pole on itself). These forces result
in internal forces inside the body. Knowledge of the internal forces at all
points in the body is essential because these forces need to be less than the
strength of the material used in the structure. Stress, which is defined as the
intensity of the load per unit area, determines this knowledge because the
strengths of a material are intrinsically known in terms of stress.

Imagine a body (Figure 2.5) in equilibrium under various loads. If the body
is cut at a cross-section, forces will need to be applied on the cross-sectional
area so that it maintains equilibrium as in the original body. At any cross-

 

FIGURE 2.4

 

Deformation of a square plate taken from a unidirectional lamina with fibers at an angle under
normal loads.
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section, a force 

 

Δ

 

P

 

 is acting on an area of 

 

Δ

 

A

 

. This force vector has a com-
ponent normal to the surface, 

 

Δ

 

P

 

n

 

, and one parallel to the surface, 

 

Δ

 

P

 

s

 

. The
definition of stress then gives

,

. (2.3a,b)

The component of the stress normal to the surface, 

 

σ

 

n

 

, is called the normal
stress and the stress parallel to the surface, 

 

τ

 

s

 

, is called the shear stress. If
one takes a different cross-section through the same point, the stress remains
unchanged but the two components of stress, normal stress, 

 

σ

 

n

 

, and shear
stress, 

 

τ

 

s

 

, will change. However, it has been proved that a complete definition
of stress at a point only needs use of any three mutually orthogonal coordi-
nate systems, such as a Cartesian coordinate system.

Take the right-hand coordinate system

 

 x–y–z

 

. Take a cross-section parallel
to the 

 

yz

 

-plane in the body as shown in Figure 2.6. The force vector 

 

Δ

 

P

 

 acts

 

FIGURE 2.5

 

Stresses on an infinitesimal area on an arbitrary plane.
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on an area 

 

Δ

 

A

 

. The component 

 

Δ

 

P

 

x

 

 is normal to the surface. The force vector

 

Δ

 

P

 

s

 

 is parallel to the surface and can be further resolved into components
along the

 

 y 

 

and

 

 z 

 

axes: 

 

Δ

 

P

 

y

 

 and 

 

Δ

 

P

 

z

 

. The definition of the various stresses
then is

,

. (2.4a–c)

Similarly, stresses can be defined for cross-sections parallel to the 

 

xy

 

 and

 

xz

 

 planes. For defining all these stresses, the stress at a point is defined
generally by taking an infinitesimal cuboid in a right-hand coordinate system

 

FIGURE 2.6

 

Forces on an infinitesimal area on the 

 

y–z

 

 plane.
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and finding the stresses on each of its faces. Nine different stresses act at a
point in the body as shown in Figure 2.7. The six shear stresses are related as

,

,

. (2.5a–c)

The preceding three relations are found by equilibrium of moments of the
infinitesimal cube. There are thus six independent stresses. The stresses 

 

σ

 

x

 

,

 

σ

 

y

 

, and 

 

σ

 

z

 

 are normal to the surfaces of the cuboid and the stresses 

 

τ

 

yz

 

, 

 

τ

 

zx

 

,
and 

 

τ

 

xy

 

 are along the surfaces of the cuboid.
A tensile normal stress is positive, and a compressive normal stress is

negative. A shear stress is positive, if its direction and the direction of the
normal to the face on which it is acting are both in positive or negative
direction; otherwise, the shear stress is negative.

 

2.2.2 Strain

 

Similar to the need for knowledge of forces inside a body, knowing the
deformations because of the external forces is also important. For example,
a piston in an internal combustion engine may not develop larger stresses
than the failure strengths, but its excessive deformation may seize the engine.
Also, finding stresses in a body generally requires finding deformations. This
is because a stress state at a point has six components, but there are only
three force-equilibrium equations (one in each direction).

 

FIGURE 2.7

 

Stresses on an infinitesimal cuboid.
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The knowledge of deformations is specified in terms of strains — that is,
the relative change in the size and shape of the body. The strain at a point
is also defined generally on an infinitesimal cuboid in a right-hand coordi-
nate system. Under loads, the lengths of the sides of the infinitesimal cuboid
change. The faces of the cube also get distorted. The change in length cor-
responds to a normal strain and the distortion corresponds to the shearing
strain. Figure 2.8 shows the strains on one of the faces, 

 

ABCD

 

, of the cuboid.
The strains and displacements are related to each other. Take the two

perpendicular lines 

 

AB

 

 and 

 

AD

 

. When the body is loaded, the two lines
become 

 

A

 

′

 

B

 

′

 

 and 

 

A

 

′

 

D

 

′

 

. Define the displacements of a point (

 

x,y,z

 

) as 

 

u = u(x,y,z)

 

 = displacement in 

 

x

 

-direction at point (

 

x,y,z

 

)

 

v = v(x,y,z)

 

 = displacement in 

 

y

 

-direction at point (

 

x,y,z

 

)

 

w = w(x,y,z)

 

 = displacement in 

 

z

 

-direction at point (

 

x,y,z

 

)

The normal strain in the 

 

x

 

-direction, 

 

ε

 

x

 

, is defined as the change of length
of line 

 

AB

 

 per unit length of 

 

AB

 

 as

, (2.6)

where

 

FIGURE 2.8

 

Normal and shearing strains on an infinitesimal area in the 

 

x–y

 

 plane.
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(2.7a,b)

Substituting the preceding expressions of Equation (2.7) in Equation (2.6),

.

Using definitions of partial derivatives

(2.8)

because

,

,

for small displacements.
The normal strain in the y-direction, εy is defined as the change in the

length of line AD per unit length of AD as

, (2.9)

where

′ ′ = ′ ′ + ′ ′A B A P B P( ) ( ) ,2 2
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AD = Δy . (2.10a,b)

Substituting the preceding expressions of Equation (2.10) in Equation (2.9),

.

Using definitions of partial derivatives,

(2.11)

because

for small displacements.
A normal strain is positive if the corresponding length increases; a normal

strain is negative if the corresponding length decreases.
The shearing strain in the x–y plane, γxy is defined as the change in the

angle between sides AB and AD from 90°. This angular change takes place
by the inclining of sides AB and AD. The shearing strain is thus defined as 

(2.12)
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where

(2.13a–c)

(2.14a–c)

Substituting Equation (2.13) and Equation (2.14) in Equation (2.12),

(2.15)

because

for small displacements.

1 0
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The shearing strain is positive when the angle between the sides AD and
AB decreases; otherwise, the shearing strain is negative.

The definitions of the remaining normal and shearing strains can be found
by noting the change in size and shape of the other sides of the infinitesimal
cuboid in Figure 2.7 as

(2.16a–c)

Example 2.1

A displacement field in a body is given by 

u = 10–5(x2 + 6y + 7xy) 
v = 10–5(yz) 
w = 10–5(xy + yz2) 

Find the state of strain at (x,y,z) = (1,2,3).

Solution

From Equation (2.8),

.

yz

v
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y
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∂
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x
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From Equation (2.11),

.

From Equation (2.16c),

.

From Equation (2.15),

∈ = ∂
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v
y
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.

From Equation (2.16a),

.

From Equation (2.16b),

.

2.2.3 Elastic Moduli

As mentioned in Section 2.2.2, three equilibrium equations are insufficient
for defining all six stress components at a point. For a body that is linearly
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elastic and has small deformations, stresses and strains at a point are
related through six simultaneous linear equations called Hooke’s law.
Note that 15 unknown parameters are at a point: six stresses, six strains,
and three displacements. Combined with six simultaneous linear equa-
tions of Hooke’s law, six strain-displacement relations — given by Equa-
tion (2.8), Equation (2.11), Equation (2.15), and Equation (2.16) — and
three equilibrium equations give 15 equations for the solution of 15
unknowns.1 Because strain-displacement and equilibrium equations are
differential equations, they are subject to knowing boundary conditions
for complete solutions.

For a linear isotropic material in a three-dimensional stress state, the
Hooke’s law stress–strain relationships at a point in an x–y–z orthogonal
system (Figure 2.9) in matrix form are 

(2.17)

FIGURE 2.9
Cartesian coordinates in a three-dimensional body.
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(2.18)

where ν is the Poisson’s ratio. The shear modulus G is a function of two
elastic constants, E and ν, as

(2.19)

The 6 × 6 matrix in Equation (2.17) is called the compliance matrix [S] of
an isotropic material. The 6 × 6 matrix in Equation (2.18), obtained by invert-
ing the compliance matrix in Equation (2.17), is called the stiffness matrix
[C] of an isotropic material.

2.2.4 Strain Energy

Energy is defined as the capacity to do work. In solid, deformable, elastic
bodies under loads, the work done by external loads is stored as recoverable
strain energy. The strain energy stored in the body per unit volume is then
defined as 

 (2.20)

Example 2.2

Consider a bar of cross-section A and length L (Figure 2.10). A uniform tensile
load P is applied to the two ends of the rod; find the state of stress and strain,
and strain energy per unit volume of the body. Assume that the rod is made
of a homogeneous isotropic material of Young’s modulus, E.

x

y

z

yz

zx

xy

E

σ
σ

σ
τ

τ
τ

ν

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

−(1 ))
( )( ) ( )( ) ( )( )1 2 1 1 2 1 1 2 1

0 0 0
− + − + − +ν ν

ν
ν ν

ν
ν ν

ν

E E

EE E E
( )( )

( )
( )( ) ( )( )1 2 1

1
1 2 1 1 2 1− +

−
− + − +ν ν

ν
ν ν

ν
ν ν

00 0 0

1 2 1 1 2 1
1

1 2
ν
ν ν

ν
ν ν

ν
ν

E E E
( )( ) ( )( )

( )
( )(− + − +

−
− 11

0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥

ν)
G

G

G

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥

x

y

z

yz

zx

xy

ε
ε

ε
γ

γ

γ

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

G =
E

2(1+ )
.

ν

W x x y y z z xy xy= + + + +1
2

(σ ε σ ε σ ε τ γ yyz yz zx zxτ γ τ γ+ ).

1343_book.fm  Page 77  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



78 Mechanics of Composite Materials, Second Edition

Solution

The stress state at any point is given by

(2.21)

If the circular rod is made of an isotropic, homogeneous, and linearly
elastic material, then the stress–strain at any point is related as 

(2.22)

(2.23)

The strain energy stored per unit volume in the rod, per Equation (2.20), is

FIGURE 2.10
Cylindrical rod under uniform uniaxial load, P.
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. (2.24)

2.3 Hooke’s Law for Different Types of Materials

The stress–strain relationship for a general material that is not linearly elastic
and isotropic is more complicated than Equation (2.17) and Equation (2.18).
Assuming linear and elastic behavior for a composite is acceptable; however,
assuming it to be isotropic is generally unacceptable. Thus, the stress–strain
relationships follow Hooke’s law, but the constants relating stress and strain
are more in number than seen in Equation (2.17) and Equation (2.18). The
most general stress–strain relationship is given as follows for a three-dimen-
sional body in a 1–2–3 orthogonal Cartesian coordinate system:

(2.25)

where the 6 × 6 [C] matrix is called the stiffness matrix. The stiffness matrix
has 36 constants.

What happens if one changes the system of coordinates from an orthogonal
system 1–2–3 to some other orthogonal system, 1′–2′–3′? Then, new stiffness
and compliance constants will be required to relate stresses and strains in
the new coordinate system 1′–2′–3′. However, the new stiffness and compli-
ance matrices in the 1′–2′–3′ system will be a function of the stiffness and
compliance matrices in the 1–2–3 system and the angle between the axes of
the 1′–2′–3′system and the 1–2–3 system.
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Inverting Equation (2.25), the general strain–stress relationship for a three-
dimensional body in a 1–2–3 orthogonal Cartesian coordinate system is

. (2.26)

In the case of an isotropic material, relating the preceding strain–stress
equation to Equation (2.17), one finds that the compliance matrix is related
directly to engineering constants as 

(2.27)

and Sij, other than in the preceding, are zero.
It can be shown that the 36 constants in Equation (2.25) actually reduce to

21 constants due to the symmetry of the stiffness matrix [C] as follows. The
stress–strain relationship (2.25) can also be written as

, (2.28)

where, in a contracted notation,

(2.29a–f)
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The strain energy in the body per unit volume, per Equation (2.20), is
expressed as 

(2.30)

Substituting Hooke’s law, Equation (2.28), in Equation (2.30),

(2.31)

Now, by partial differentiation of Equation (2.31),

(2.32)

and

(2.33)

Because the differentiation does not necessarily need to be in either order,

(2.34)

Equation (2.34) can also be proved by realizing that

Thus, only 21 independent elastic constants are in the general stiffness matrix
[C] of Equation (2.25). This also implies that only 21 independent constants
are in the general compliance matrix [S] of Equation (2.26).

2.3.1 Anisotropic Material

The material that has 21 independent elastic constants at a point is called an
anisotropic material. Once these constants are found for a particular point,
the stress and strain relationship can be developed at that point. Note that
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these constants can vary from point to point if the material is nonhomoge-
neous. Even if the material is homogeneous (or assumed to be), one needs
to find these 21 elastic constants analytically or experimentally. However,
many natural and synthetic materials do possess material symmetry — that
is, elastic properties are identical in directions of symmetry because symme-
try is present in the internal structure. Fortunately, this symmetry reduces
the number of the independent elastic constants by zeroing out or relating
some of the constants within the 6 × 6 stiffness [C] and 6 × 6 compliance [S]
matrices. This simplifies the Hooke’s law relationships for various types of
elastic symmetry. 

2.3.2 Monoclinic Material

If, in one plane of material symmetry* (Figure 2.11), for example, direction
3 is normal to the plane of material symmetry, then the stiffness matrix
reduces to

(2.35)

as

FIGURE 2.11
Transformation of coordinate axes for 1–2 plane of symmetry for a monoclinic material.

* Material symmetry implies that the material and its mirror image about the plane of symmetry
are identical. 
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The direction perpendicular to the plane of symmetry is called the principal
direction. Note that there are 13 independent elastic constants. Feldspar is an
example of a monoclinic material.

The compliance matrix correspondingly reduces to

. (2.36)

Modifying an excellent example2 of demonstrating the meaning of elastic
symmetry for a monoclinic material given, consider a cubic element of Figure
2.12 taken out of a monoclinic material, in which 3 is the direction perpen-
dicular to the 1–2 plane of symmetry. Apply a normal stress, σ3, to the
element. Then using the Hooke’s law Equation (2.26) and the compliance
matrix (Equation 2.36) for the monoclinic material, one gets

. (2.37a–f)

The cube will deform in all directions as determined by the normal strain
equations. The shear strains in the 2–3 and 3–1 plane are zero, showing that
the element will not change shape in those planes. However, it will change
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shape in the 1–2 plane. Thus, the faces ABEH and CDFG perpendicular to
the 3 direction will change from rectangles to parallelograms, while the other
four faces ABCD, BEFC, GFEH, and AHGD will stay as rectangles. This is
unlike anisotropic behavior, in which all faces will be deformed in shape,
and also unlike isotropic behavior, in which all faces will remain undeformed
in shape.

2.3.3 Orthotropic Material (Orthogonally Anisotropic)/Specially 
Orthotropic

If a material has three mutually perpendicular planes of material symmetry,
then the stiffness matrix is given by

FIGURE 2.12
Deformation of a cubic element made of monoclinic material.
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. (2.38)

The preceding stiffness matrix can be derived by starting from the stiffness
matrix [C] for the monoclinic material (Equation 2.35). With two more planes
of symmetry, it gives

.

Three mutually perpendicular planes of material symmetry also imply
three mutually perpendicular planes of elastic symmetry. Note that nine
independent elastic constants are present. This is a commonly found material
symmetry unlike anisotropic and monoclinic materials. Examples of an
orthotropic material include a single lamina of continuous fiber composite,
arranged in a rectangular array (Figure 2.13), a wooden bar, and rolled steel.

The compliance matrix reduces to

. (2.39)

FIGURE 2.13
A unidirectional lamina as a monoclinic material with fibers, arranged in a rectangular array.
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Demonstrating the meaning of elastic symmetry for an orthotropic mate-
rial is similar to the approach taken for a monoclinic material (Section 2.3.2).
Consider a cubic element (Figure 2.14) taken out of the orthotropic material,
where 1, 2, and 3 are the principal directions or 1–2, 2–3, and 3–1 are the
three mutually orthogonal planes of symmetry. Apply a normal stress, σ3,
to the element. Then, using the Hooke’s law Equation (2.26) and the com-
pliance matrix (Equation 2.39) for the orthotropic material, one gets

FIGURE 2.14
Deformation of a cubic element made of orthotropic material.
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(2.40a–f)

The cube will deform in all directions as determined by the normal strain
equations. However, the shear strains in all three planes (1–2, 2–3, and 3–1)
are zero, showing that the element will not change shape in those planes.
Thus, the cube will not deform in shape under any normal load applied in
the principal directions. This is unlike the monoclinic material, in which two
out of the six faces of the cube changed shape.

A cube made of isotropic material would not change its shape either;
however, the normal strains, ε1 and ε2, will be different in an orthotropic
material and identical in an isotropic material.

2.3.4 Transversely Isotropic Material

Consider a plane of material isotropy in one of the planes of an orthotropic
body. If direction 1 is normal to that plane (2–3) of isotropy, then the stiffness
matrix is given by

. (2.41)

Transverse isotropy results in the following relations:
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a hexagonal array. One may consider the elastic properties in the two direc-
tions perpendicular to the fibers to be the same. In Figure 2.15, the fibers are
in direction 1, so plane 2–3 will be considered as the plane of isotropy.

The compliance matrix reduces to

. (2.42)

2.3.5 Isotropic Material

If all planes in an orthotropic body are identical, it is an isotropic material;
then, the stiffness matrix is given by

. (2.43)

Isotropy results in the following additional relationships:

FIGURE 2.15
A unidirectional lamina as a transversely isotropic material with fibers arranged in a square
array.
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.

This also implies infinite principal planes of symmetry. Note the two
independent constants. This is the most common material symmetry avail-
able. Examples of isotropic bodies include steel, iron, and aluminum. Relat-
ing Equation (2.43) to Equation (2.18) shows that

(2.44a–b)

Note that

The compliance matrix reduces to 

. (2.45)
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types of materials:
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• Anisotropic: 21
• Monoclinic: 13
• Orthotropic: 9
• Transversely isotropic: 5
• Isotropic: 2

Example 2.3

Show the reduction of anisotropic material stress–strain Equation (2.25) to
those of a monoclinic material stress–strain Equation (2.35).

Solution

Assume direction 3 is perpendicular to the plane of symmetry. Now in the
coordinate system 1–2–3, Equation (2.25) with Cij = Cji from Equation (2.34) is

(2.46)

Also, in the coordinate system 1′–2′–3′ (Figure 2.11),

(2.47)

Because there is a plane of symmetry normal to direction 3, the stresses
and strains in the 1–2–3 and 1′–2′–3′ coordinate systems are related by

(2.48a–f)
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(2.49a–f)

The terms in the first equation of Equation (2.46) and Equation (2.47) can
be written as

(2.50a–b)

Substituting Equation (2.48) and Equation (2.49) in Equation (2.50b),

. (2.51)

Subtracting Equation (2.51) from Equation (2.50a) gives

. (2.52)

Because γ23 and γ31 are arbitrary,

(2.53a)

Similarly, one can show that

(2.54b-d)

Thus, only 13 independent elastic constants are present in a monoclinic
material.

Example 2.4

The stress–strain relation is given in terms of compliance matrix for an
orthotropic material in Equation (2.26) and Equation (2.39). Rewrite the
compliance matrix equations in terms of the nine engineering constants for

ε ε ε ε ε ε1 1 2 2 3 3= = =′ ′ ′, , ,

γ γ γ γ γ γ23 2 3 31 3 1 12 1 2= − = − =′ ′ ′ ′ ′ ′, , .

σ ε ε ε γ γ γ1 11 1 12 2 13 3 14 23 15 31 16 12= + + + + +C C C C C C ,

σ ε ε ε γ γ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + +1 11 1 12 2 13 3 1 4 2 3 15 3 1C C C C C ,, + ′ ′C16 1 2γ

σ ε ε ε γ γ γ1 11 1 12 2 13 3 14 23 15 31 16 12= + + − − +C C C C C C

0 2 214 23 15 31= +C Cγ γ

C C14 15 0= = .

C C24 25 0= = ,

C C34 35 0= = ,

C C46 56 0= = .
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92 Mechanics of Composite Materials, Second Edition

an orthotropic material. What is the stiffness matrix in terms of the engineer-
ing constants?

Solution

Let us see how the compliance matrix and engineering constants of an
orthotropic material are related. As shown in Figure 2.16a, apply σ1 ≠ 0, σ2

= 0, σ3 = 0, τ23 = 0, τ31 = 0, τ12 = 0. Then, from Equation (2.26) and Equation
(2.39):

ε1 = S11σ1

ε2 = S12σ1

ε3 = S13σ1

FIGURE 2.16
Application of stresses to find engineering constants of a three-dimensional orthotropic body.

σ1
τ23

τ31

τ12

σ1

(a)

(b)

(c)

(e)

(f )

3
2

1

(d)

σ2

σ2

σ3

σ3
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Macromechanical Analysis of a Lamina 93

γ23 = 0

γ31 = 0

γ12 = 0.

The Young’s modulus in direction 1, E1, is defined as

. (2.55)

The Poisson’s ratio, ν12, is defined as

. (2.56)

In general terms, νij is defined as the ratio of the negative of the normal
strain in direction j to the normal strain in direction i, when the load is
applied in the normal direction i.

The Poisson’s ratio ν13 is defined as

. (2.57)

Similarly, as shown in Figure 2.16b, apply σ1 = 0, σ2 = 0, σ3 ≠ 0, τ23 = 0, τ31

= 0, τ12 = 0. Then, from Equation (2.26) and Equation (2.39),

(2.58)

(2.59)

. (2.60)

Similarly, as shown in Figure 2.16c, apply σ1 = 0, σ2 = 0, σ3 ≠ 0, τ23 = 0, τ31

= 0, τ12 = 0. From Equation (2.26) and Equation (2.39),

(2.61)

E
S1

1

1 11

1≡ =σ
ε

ν ε
ε12

2

1

12

11

≡ − = − S
S

ν ε
ε13

3

1

13

11

≡ − = − S
S

2
22

1
E

S
=

ν21
12

22

= − S
S

ν23
23

22

= − S
S

E
S3

33

1=
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94 Mechanics of Composite Materials, Second Edition

(2.62)

. (2.63)

Apply, as shown in Figure 2.16d, σ1 = 0, σ2 = 0, σ3 = 0, τ23 ≠ 0, τ31 = 0, τ12

= 0. Then, from Equation (2.26) and Equation (2.39),

ε1 = 0

ε2 = 0

ε3 = 0

γ23 = S44τ23

γ31 = 0

γ12 = 0

The shear modulus in plane 2–3 is defined as

. (2.64)

Similarly, as shown in Figure 2.16e, apply σ1 = 0, σ2 = 0, σ3 = 0, τ23 = 0, τ31

≠ 0, τ12 = 0. Then, from Equation (2.26) and Equation (2.39),

. (2.65)

Similarly, as shown in Figure 2.16f, apply σ1 = 0, σ2 = 0, σ3 = 0, τ23 = 0, τ31

= 0, τ12 ≠ 0. Then, from Equation (2.26) and Equation (2.39),

. (2.66)

In Equation (2.55) through Equation (2.66), 12 engineering constants have
been defined as follows:

Three Young’s moduli, E1, E2, and E3, one in each material axis

ν31
13

33

= − S
S

ν32
23

33

= − S
S

G
S23

23

23 44

1≡ =τ
γ

G
S31

55

1=

12
66

1
G

S
=
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Macromechanical Analysis of a Lamina 95

Six Poisson’s ratios, ν12, ν13, ν21, ν23, ν31, and ν32, two for each plane
Three shear moduli, G23, G31, and G12, one for each plane

However, the six Poisson’s ratios are not independent of each other. For
example, from Equation (2.55), Equation (2.56), Equation (2.58), and Equa-
tion (2.59), 

. (2.67)

Similarly, from Equation (2.55), Equation (2.57), Equation (2.61), and Equa-
tion (2.62),

, (2.68)

and from Equation (2.58), Equation (2.60), Equation (2.61), and Equation
(2.63), 

. (2.69)

Equation (2.67), Equation (2.68), and Equation (2.69) are called reciprocal
Poisson’s ratio equations. These relations reduce the total independent engi-
neering constants to nine. This is the same number as the number of inde-
pendent constants in the stiffness or the compliance matrix.

Rewriting the compliance matrix in terms of the engineering constants
gives

. (2.70)

ν ν12

1

21

2E E
=

ν ν13

1

31

3E E
=

ν ν23

2

32

3E E
=

[ ]S

E E E

E E E

=

− −

− −

1 0 0 0

1 0 0 0
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12

1
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21

2 2

23
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ν ν

ν ν

−− −31

3
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3 3

23

31

1 0 0 0

0 0 0 1 0 0
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96 Mechanics of Composite Materials, Second Edition

Inversion of Equation (2.70) would be the compliance matrix [C] and is
given by

, (2.71)

where

. (2.72)

Although nine independent elastic constants are in the compliance matrix
[S] and, correspondingly, in the stiffness matrix [C] for orthotropic materials,
constraints on the values of these constants exist. Based on the first law of
thermodynamics, the stiffness and compliance matrices must be positive
definite. Thus, the diagonal terms of [C] and [S] in Equation (2.71) and
Equation (2.70), respectively, need to be positive. From the diagonal elements
of the compliance matrix [S], this gives

, , , , , (2.73)

and, from the diagonal elements of the stiffness matrix [C], gives

, , , (2.74)

 

Using the reciprocal relations given by Equation (2.67) through Equation
(2.69),

 for  and i,j = 1,2,3,

we can rewrite the inequalities as follows.

C

E E E E

⎡⎣ ⎤⎦ =

− + +1 23 32

2 3

21 23 31

2 3

31 21 3ν ν ν ν ν ν ν ν
Δ Δ

22

2 3

21 23 31

2 3

13 31

1 3

32

0 0 0

1

E E

E E E E

Δ

Δ Δ
ν ν ν ν ν ν ν+ − + 112 31

1 3

31 21 32

2 3

32 12 31

1 3

0 0 0
ν

ν ν ν ν ν ν
E E

E E E E

Δ

Δ
+ +

ΔΔ Δ
1

0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

12 21

1 2

23
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12

−
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E E
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Δ = − − − −( )1 212 21 23 32 13 31 21 32 13 1 2ν ν ν ν ν ν ν ν ν / E E E33( )

E1 0> E2 0> E3 0> G12 0> G23 0> G31 0>
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Macromechanical Analysis of a Lamina 97

For example, because

,

then

. (2.75a)

Similarly, five other such relationships can be developed to give

(2.75b)

(2.75c)

(2.75d)

(2.75e)

. (2.75f)

These restrictions on the elastic moduli are important in optimizing prop-
erties of a composite because they show that the nine independent properties
cannot be varied without influencing the limits of the others.

1 012 21− >ν ν

ν
ν ν12

21

1

2 12

1 1< = E
E

ν
ν12

1

2 12

1< E
E

ν12
1

2

< E
E

ν21
2

1

< E
E

ν32
3

2

< E
E

ν23
2
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ν31
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98 Mechanics of Composite Materials, Second Edition

Example 2.5

Find the compliance and stiffness matrix for a graphite/epoxy lamina. The
material properties are given as

, ,

, ,

, , .

Solution

E GPa1 181= E GPa2 10 3= . E GPa3 10 3= .

ν12 0 28= . ν23 0 60= . ν13 0 27= .

G GPa12 7 17= . G GPa23 3 0= . G GPa31 7 00= .

S
E

Pa11
1

9
12 11 1

181 10
5 525 10= =

×
= × − −.

S
E

Pa22
2

9
11 11 1

10 3 10
9 709 10= =

×
= × − −

.
.

S
E

Pa33
3

9
11 11 1

10 3 10
9 709 10= =

×
= × − −

.
.

S
E

Pa12
12

1
9

12 10 28
181 10

1 547 10= − = −
×

= − × − −ν .
.

S
E

Pa13
13

1
9

12 10 27
181 10

1 492 10= − = −
×

= − × − −ν .
.

S
E

Pa23
23

2
9

11 10 6
10 3 10

5 825 10= − = −
×

= − × − −ν .
.

.

S
G

Pa44
23

9
10 11 1

3 10
3 333 10= =

×
= × − −.

S
G

Pa55
31

9
10 11 1

7 10
1 429 10= =

×
= × − −.
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Macromechanical Analysis of a Lamina 99

.

Thus, the compliance matrix for the orthotropic lamina is given by

The stiffness matrix can be found by inverting the compliance matrix and
is given by

The preceding stiffness matrix [C] can also be found directly by using Equa-
tion (2.71).

2.4 Hooke’s Law for a Two-Dimensional Unidirectional 
Lamina

2.4.1 Plane Stress Assumption

A thin plate is a prismatic member having a small thickness, and it is the
case for a typical lamina. If a plate is thin and there are no out-of-plane loads,
it can be considered to be under plane stress (Figure 2.17). If the upper and
lower surfaces of the plate are free from external loads, then σ3 = 0, τ31 = 0,
and τ23 = 0. Because the plate is thin, these three stresses within the plate are

S
G

Pa66
12

9
10 11 1

7 17 10
1 395 10= =

×
= × − −

.
.

S⎡⎣ ⎤⎦ =

× − × − ×− − −5 525 10 1 547 10 1 492 10 0 012 12 12. . . 00
1 547 10 9 709 10 5 825 10 0 0 0
1

12 11 11− × × − ×
−

− − −. . .
.4492 10 5 825 10 9 709 10 0 0 0

0 0 0 3 33

12 11 11× − × ×− − −. .
. 33 10 0 0

0 0 0 0 1 429 10 0
0 0 0 0 0 1 395 10
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100 Mechanics of Composite Materials, Second Edition

assumed to vary little from the magnitude of stresses at the top and the
bottom surfaces. Thus, they can be assumed to be zero within the plate also.
A lamina is thin and, if no out-of-plane loads are applied, one can assume
that it is under plane stress. This assumption then reduces the three-dimen-
sional stress–strain equations to two-dimensional stress–strain equations.

2.4.2 Reduction of Hooke’s Law in Three Dimensions to Two Dimensions

A unidirectional lamina falls under the orthotropic material category. If the
lamina is thin and does not carry any out-of-plane loads, one can assume
plane stress conditions for the lamina. Therefore, taking Equation (2.26) and
Equation (2.39) and assuming σ3 = 0, τ23 = 0, and τ31 = 0, then

(2.76a,b)

The normal strain, ε3, is not an independent strain because it is a function
of the other two normal strains, ε1 and ε2. Therefore, the normal strain, ε3,
can be omitted from the stress–strain relationship (2.39). Also, the shearing
strains, γ23 and γ31, can be omitted because they are zero. Equation (2.39) for
an orthotropic plane stress problem can then be written as

(2.77)

FIGURE 2.17
Plane stress conditions for a thin plate.
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Macromechanical Analysis of a Lamina 101

where Sij are the elements of the compliance matrix. Note the four indepen-
dent compliance elements in the matrix.

Inverting Equation (2.77) gives the stress–strain relationship as

, (2.78)

where Qij are the reduced stiffness coefficients, which are related to the
compliance coefficients as

(2.79a–d)

Note that the elements of the reduced stiffness matrix, Qij, are not the same
as the elements of the stiffness matrix, Cij (see Exercise 2.13).

2.4.3 Relationship of Compliance and Stiffness Matrix to Engineering 
Elastic Constants of a Lamina

Equation (2.77) and Equation (2.78) show the relationship of stress and strain
through the compliance [S] and reduced stiffness [Q] matrices. However,
stress and strains are generally related through engineering elastic constants.
For a unidirectional lamina, these engineering elastics constants are

E1 = longitudinal Young’s modulus (in direction 1)
E2 = transverse Young’s modulus (in direction 2)
ν12 = major Poisson’s ratio, where the general Poisson’s ratio, νij is

defined as the ratio of the negative of the normal strain in direction
j to the normal strain in direction i, when the only normal load is
applied in direction i

G12 = in-plane shear modulus (in plane 1–2)
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Macromechanical Analysis of a Lamina 99

.

Thus, the compliance matrix for the orthotropic lamina is given by

The stiffness matrix can be found by inverting the compliance matrix and
is given by

The preceding stiffness matrix [C] can also be found directly by using Equa-
tion (2.71).

2.4 Hooke’s Law for a Two-Dimensional Unidirectional 
Lamina

2.4.1 Plane Stress Assumption

A thin plate is a prismatic member having a small thickness, and it is the
case for a typical lamina. If a plate is thin and there are no out-of-plane loads,
it can be considered to be under plane stress (Figure 2.17). If the upper and
lower surfaces of the plate are free from external loads, then σ3 = 0, τ31 = 0,
and τ23 = 0. Because the plate is thin, these three stresses within the plate are
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100 Mechanics of Composite Materials, Second Edition

assumed to vary little from the magnitude of stresses at the top and the
bottom surfaces. Thus, they can be assumed to be zero within the plate also.
A lamina is thin and, if no out-of-plane loads are applied, one can assume
that it is under plane stress. This assumption then reduces the three-dimen-
sional stress–strain equations to two-dimensional stress–strain equations.

2.4.2 Reduction of Hooke’s Law in Three Dimensions to Two Dimensions

A unidirectional lamina falls under the orthotropic material category. If the
lamina is thin and does not carry any out-of-plane loads, one can assume
plane stress conditions for the lamina. Therefore, taking Equation (2.26) and
Equation (2.39) and assuming σ3 = 0, τ23 = 0, and τ31 = 0, then

(2.76a,b)

The normal strain, ε3, is not an independent strain because it is a function
of the other two normal strains, ε1 and ε2. Therefore, the normal strain, ε3,
can be omitted from the stress–strain relationship (2.39). Also, the shearing
strains, γ23 and γ31, can be omitted because they are zero. Equation (2.39) for
an orthotropic plane stress problem can then be written as

(2.77)

FIGURE 2.17
Plane stress conditions for a thin plate.
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Macromechanical Analysis of a Lamina 101

where Sij are the elements of the compliance matrix. Note the four indepen-
dent compliance elements in the matrix.

Inverting Equation (2.77) gives the stress–strain relationship as

, (2.78)

where Qij are the reduced stiffness coefficients, which are related to the
compliance coefficients as

(2.79a–d)

Note that the elements of the reduced stiffness matrix, Qij, are not the same
as the elements of the stiffness matrix, Cij (see Exercise 2.13).

2.4.3 Relationship of Compliance and Stiffness Matrix to Engineering 
Elastic Constants of a Lamina

Equation (2.77) and Equation (2.78) show the relationship of stress and strain
through the compliance [S] and reduced stiffness [Q] matrices. However,
stress and strains are generally related through engineering elastic constants.
For a unidirectional lamina, these engineering elastics constants are

E1 = longitudinal Young’s modulus (in direction 1)
E2 = transverse Young’s modulus (in direction 2)
ν12 = major Poisson’s ratio, where the general Poisson’s ratio, νij is

defined as the ratio of the negative of the normal strain in direction
j to the normal strain in direction i, when the only normal load is
applied in direction i

G12 = in-plane shear modulus (in plane 1–2)
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102 Mechanics of Composite Materials, Second Edition

Experimentally, the four independent engineering elastic constants are
measured as follows and can be related to the four independent elements of
the compliance matrix [S] of Equation (2.77).

• Apply a pure tensile load in direction 1 (Figure 2.18a), that is,

(2.80)

Then, from Equation (2.77),

FIGURE 2.18
Application of stresses to find engineering constants of a unidirectional lamina.

(a)

2

1σ1 σ1

τ12

τ12

2

1

(c)

σ2

σ2

2

1

(b)

σ σ τ1 2 120 0 0≠ = =, , .
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(2.81a–c)

By definition, if the only nonzero stress is σ1, as is the case here, then 

(2.82)

(2.83)

• Apply a pure tensile load in direction 2 (Figure 2.18b), that is

(2.84)

Then, from Equation (2.77),

(2.85a–c)

By definition, if the only nonzero stress is σ2, as is the case here, then

(2.86)

(2.87)

The ν21 term is called the minor Poisson’s ratio. From Equation (2.82),
Equation (2.83), Equation (2.86), and Equation (2.87), we have
the reciprocal relationship

(2.88)

ε σ
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=

=

=
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ν ε
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ε21
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• Apply a pure shear stress in the plane 1–2 (Figure 2.18c) — that is,

(2.89)

Then, from Equation (2.77),

(2.90a–c)

By definition, if τ12 is the only nonzero stress, as is the case here, then

(2.91)

Thus, we have proved that

(2.92a–d)

Also, the stiffness coefficients Qij are related to the engineering constants
through Equation (2.98) and Equation (2.92) as

σ σ τ1 2 120 0 0= = ≠, .and

ε1 0= ,

ε2 0= ,

γ τ12 66 12= S .

G
S12

12

12 66

1≡ =τ
γ

.

S
E11

1

1= ,

S
E12

12

1

= − ν
,

S
E22

2

1= ,

S
G66

12

1= .

Q
E

11
1

21 121
=

− ν ν
,
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(2.93a–d)

Equation (2.77), Equation (2.78), Equation (2.92), and Equation (2.93) relate
stresses and strains through any of the following combinations of four con-
stants.

Q11, Q12, Q22, Q66, or
S11, S12, S22, S66, or
E1, E2, ν12, G12

The unidirectional lamina is a specially orthotropic lamina because normal
stresses applied in the 1–2 direction do not result in any shearing strains in
the 1–2 plane because Q16 = Q26 = 0 = S16 = S26. Also, the shearing stresses
applied in the 1–2 plane do not result in any normal strains in the 1 and 2
directions because Q16 = Q26 = 0 = S16 = S26.

A woven composite with its weaves perpendicular to each other and short
fiber composites with fibers arranged perpendicularly to each other or
aligned in one direction also are specially orthotropic. Thus, any discussion in
this chapter or in Chapter 4 (“Macromechanics of a Laminate”) is valid for
such a lamina as well. Mechanical properties of some typical unidirectional
lamina are given in Table 2.1 and Table 2.2.

Example 2.6

For a graphite/epoxy unidirectional lamina, find the following

1. Compliance matrix
2. Minor Poisson’s ratio
3. Reduced stiffness matrix
4. Strains in the 1–2 coordinate system if the applied stresses (Figure

2.19) are 

Use the properties of unidirectional graphite/epoxy lamina from Table 2.1.

Q
E

12
12 2

21 121
=

−
ν

ν ν
,

Q
E

22
2

21 121
=

− ν ν
, and

66 12Q G= .

σ σ τ1 2 122 3 4= = − =MPa MPa MPa, , .
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106 Mechanics of Composite Materials, Second Edition

Solution

From Table 2.1, the engineering elastic constants of the unidirectional graph-
ite/epoxy lamina are 

1. Using Equation (2.92), the compliance matrix elements are

TABLE 2.1

Typical Mechanical Properties of a Unidirectional Lamina (SI System of Units)

Property Symbol Units
Glass/
epoxy

Boron/
epoxy

Graphite/
epoxy

Fiber volume fraction Vf 0.45 0.50 0.70
Longitudinal elastic modulus E1 GPa 38.6 204 181
Transverse elastic modulus E2 GPa 8.27 18.50 10.30
Major Poisson’s ratio ν12 0.26 0.23 0.28
Shear modulus G12 GPa 4.14 5.59 7.17
Ultimate longitudinal tensile 
strength

MPa 1062 1260 1500

Ultimate longitudinal 
compressive strength 

MPa 610 2500 1500

Ultimate transverse tensile 
strength

MPa 31 61 40

Ultimate transverse 
compressive strength

MPa 118 202 246

Ultimate in-plane shear 
strength

MPa 72 67 68

Longitudinal coefficient of 
thermal expansion

α1 μm/m/°C 8.6 6.1 0.02

Transverse coefficient of 
thermal expansion

α2 μm/m/°C 22.1 30.3 22.5

Longitudinal coefficient of 
moisture expansion

β1 m/m/kg/kg 0.00 0.00 0.00

Transverse coefficient of 
moisture expansion

β2 m/m/kg/kg 0.60 0.60 0.60

Source: Tsai, S.W. and Hahn, H.T., Introduction to Composite Materials, CRC Press, Boca Raton,
FL, Table 1.7, p. 19; Table 7.1, p. 292; Table 8.3, p. 344. Reprinted with permission.

( )1
T

ultσ

( )1
C

ultσ

( )2
T

ultσ

( )2
C

ultσ

( )12τ ult

E GPa E GPa G1 2 12 12181 10 3 0 28 7 17= = = =, . , . , .ν .GPa

S Pa11 9
11 11

181 10
0 5525 10=

×
= × − −. ,

S Pa12 9
11 10 28

181 10
0 1547 10= −

×
= − × − −.

. ,
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2. Using the reciprocal relationship (2.88), the minor Poisson’s ratio is

3. Using Equation (2.93), the reduced stiffness matrix [Q] elements are

TABLE 2.2

Typical Mechanical Properties of a Unidirectional Lamina (USCS System of Units)

Property Symbol Units
Glass/
epoxy

Boron/
epoxy

Graphite/
epoxy

Fiber volume fraction Vf — 0.45 0.50 0.70
Longitudinal elastic 
modulus

E1 Msi 5.60 29.59 26.25

Transverse elastic modulus E2 Msi 1.20 2.683 1.49
Major Poisson’s ratio v12 0.26 0.23 0.28
Shear modulus G12 Msi 0.60 0.811 1.040
Ultimate longitudinal 
tensile strength

ksi 154.03 182.75 217.56

Ultimate longitudinal 
compressive strength 

ksi 88.47 362.6 217.56

Ultimate transverse tensile 
strength

ksi 4.496 8.847 5.802

Ultimate transverse 
compressive strength

ksi 17.12 29.30 35.68

Ultimate in-plane shear 
strength

ksi 10.44 9.718 9.863

Longitudinal coefficient of 
thermal expansion

α1 μin./in./°F 4.778 3.389 0.0111

Transverse coefficient of 
thermal expansion

α2 μin./in./°F 12.278 16.83 12.5

Longitudinal coefficient of 
moisture expansion

β1 in./in./lb/lb 0.00 0.00 0.00

Transverse coefficient of 
moisture expansion

β2 in./in./lb/lb 0.60 0.60 0.60

Source: Tsai, S.W. and Hahn, H.T., Introduction to Composite Materials, CRC Press, Boca Raton,
FL, Table 1.7, p. 19; Table 7.1, p. 292; Table 8.3, p. 344. USCS system used for tables reprinted
with permission.
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.

The reduced stiffness matrix [Q] could also be obtained by inverting
the compliance matrix [S] of part 1:

FIGURE 2.19
Applied stresses in a unidirectional lamina in Example 2.6.
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.

4. Using Equation (2.77), the strains in the 1–2 coordinate system are

Thus, the strains in the local axes are

2.5 Hooke’s Law for a Two-Dimensional Angle Lamina

Generally, a laminate does not consist only of unidirectional laminae because
of their low stiffness and strength properties in the transverse direction.
Therefore, in most laminates, some laminae are placed at an angle. It is thus
necessary to develop the stress–strain relationship for an angle lamina.

The coordinate system used for showing an angle lamina is as given in
Figure 2.20. The axes in the 1–2 coordinate system are called the local axes
or the material axes. The direction 1 is parallel to the fibers and the direction
2 is perpendicular to the fibers. In some literature, direction 1 is also called
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the longitudinal direction L and the direction 2 is called the transverse
direction T. The axes in the x–y coordinate system are called the global axes
or the off-axes. The angle between the two axes is denoted by an angle θ.
The stress–strain relationship in the 1–2 coordinate system has already been
established in Section 2.4 and we are now going to develop the stress–strain
equations for the x–y coordinate system.

The global and local stresses in an angle lamina are related to each other
through the angle of the lamina, θ (Appendix B):

(2.94)

where [T] is called the transformation matrix and is defined as

(2.95)

and

FIGURE 2.20
Local and global axes of an angle lamina.
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(2.96)

(2.97a,b)

Using the stress–strain Equation (2.78) in the local axes, Equation (2.94)
can be written as

(2.98)

The global and local strains are also related through the transformation
matrix (Appendix B):

(2.99)

which can be rewritten as

(2.100)

where [R] is the Reuter matrix3 and is defined as

(2.101)
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(2.102)

On carrying the multiplication of the first five matrices on the right-hand
side of Equation (2.102),

(2.103)

where  are called the elements of the transformed reduced stiffness matrix
[ ] and are given by

(2.104a–f)

Note that six elements are in the [ ] matrix. However, by looking at Equa-
tion (2.104), it can be seen that they are just functions of the four stiffness
elements, Q11, Q12, Q22, and Q66, and the angle of the lamina, θ.

Inverting Equation (2.103) gives

(2.105)
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Macromechanical Analysis of a Lamina 113

where Sij are the elements of the transformed reduced compliance matrix
and are given by

(2.106a–f)

From Equation (2.77) and Equation (2.78), for a unidirectional lamina
loaded in the material axes directions, no coupling occurs between the nor-
mal and shearing terms of strains and stresses. However, for an angle lamina,
from Equation (2.103) and Equation (2.105), coupling takes place between
the normal and shearing terms of strains and stresses. If only normal stresses
are applied to an angle lamina, the shear strains are nonzero; if only shearing
stresses are applied to an angle lamina, the normal strains are nonzero.
Therefore, Equation (2.103) and Equation (2.105) are stress–strain equations
for what is called a generally orthotropic lamina.

Example 2.7

Find the following for a 60° angle lamina (Figure 2.21) of graphite/epoxy.
Use the properties of unidirectional graphite/epoxy lamina from Table 2.1.

1. Transformed compliance matrix
2. Transformed reduced stiffness matrix

If the applied stress is σx = 2 MPa, σy = –3 MPa, and τxy = 4 MPa, also find

3. Global strains
4. Local strains
5. Local stresses
6. Principal stresses
7. Maximum shear stress
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8. Principal strains
9. Maximum shear strain

Solution

c = Cos(60°) = 0.500
s = Sin(60°) = 0.866

1. From Example 2.6,

Now, using Equation (2.106a),

FIGURE 2.21
Applied stresses to an angle lamina in Example 2.7.
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Similarly, using Equation (2.106b–f), one can evaluate

2. Invert the transformed compliance matrix [ ] to obtain the trans-
formed reduced stiffness matrix [ ]:
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3. The global strains in the x–y plane are given by Equation (2.105) as

4. Using transformation Equation (2.99), the local strains in the lamina
are

5. Using transformation Equation (2.94), the local stresses in the lamina
are

6. The principal normal stresses are given by4

(2.107)
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Macromechanical Analysis of a Lamina 117

The value of the angle at which the maximum normal stresses occur is4

(2.108)

.

Note that the principal normal stresses do not occur along the material
axes. This should be also evident from the nonzero shear stresses in
the local axes.

7. The maximum shear stress is given by4

(2.109)

The angle at which the maximum shear stress occurs is4

(2.110)
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118 Mechanics of Composite Materials, Second Edition

= 16.000

8. The principal strains are given by4

(2.111)

.

The value of the angle at which the maximum normal strains occur is4

(2.112)

= 27.860.

Note that the principal normal strains do not occur along the material
axes. This should also be clear from the nonzero shear strain in the
local axes. In addition, the axes of principal normal stresses and
principal normal strains do not match, unlike in isotropic materials.

9. The maximum shearing strain is given by4
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(2.113)

The value of the angle at which the maximum shearing strain occurs is4

(2.114)

= –17.140.

Example 2.8

As shown in Figure 2.22, a 60° angle graphite/epoxy lamina is subjected
only to a shear stress τxy = 2 MPa in the global axes. What would be the
value of the strains measured by the strain gage rosette — that is, what

FIGURE 2.22
Strain gage rosette on an angle lamina.
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would be the normal strains measured by strain gages A, B, and C? Use the
properties of unidirectional graphite/epoxy lamina from Table 2.1.

Solution

Per Example 2.7, the reduced compliance matrix [ ] is

.

The global strains in the x–y plane are given by Equation (2.105) as

For a strain gage placed at an angle, φ, to the x-axis, the normal strain
recorded by the strain gage is given by Equation (B.15) in Appendix B.

.

For strain gage A, φ = 0°:

.

For strain gage B, φ = 240°:
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Macromechanical Analysis of a Lamina 121

.

For strain gage C, φ = 120°:

.

2.6 Engineering Constants of an Angle Lamina

The engineering constants for a unidirectional lamina were related to the
compliance and stiffness matrices in Section 2.4.3. In this section, similar
techniques are applied to relate the engineering constants of an angle ply to
its transformed stiffness and compliance matrices.

1. For finding the engineering elastic moduli in direction x (Figure
2.23a), apply

(2.115)

Then, from Equation (2.105),

. (2.116a–c)

The elastic moduli in direction x is defined as

(2.117)

= × −1 724 10 4.
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FIGURE 2.23
Application of stresses to find engineering constants of an angle lamina.
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Macromechanical Analysis of a Lamina 123

Also, the Poisson’s ratio, νxy, is defined as

(2.118)

In an angle lamina, unlike in a unidirectional lamina, interaction also
occurs between the shear strain and the normal stresses. This is
called shear coupling. The shear coupling term that relates the nor-
mal stress in the x-direction to the shear strain is denoted by mx and
is defined as

(2.119)

Note that mx is a nondimensional parameter like the Poisson’s ratio.
Later, note that the same parameter, mx, relates the shearing stress
in the x–y plane to the normal strain in direction-x.

The shear coupling term is particularly important in tensile testing of
angle plies. For example, if an angle lamina is clamped at the two
ends, it will not allow shearing strain to occur. This will result in
bending moments and shear forces at the clamped ends.5

2. Similarly, by applying stresses

, (2.120)

as shown in Figure 2.23b, it can be found

(2.121)

(2.122)

(2.123)

The shear coupling term my relates the normal stress σy to the shear
strain γxy. In the following section (3), note that the same parameter
my relates the shear stress τxy in the x–y plane to the normal strain εy.

ν
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From Equation (2.117), Equation (2.118), Equation (2.121), and Equation
(2.122), the reciprocal relationship is given by

. (2.124)

3. Also, by applying the stresses

, (2.125)

as shown in Figure 2.23c, it is found that

(2.126)

(2.127)

(2.128)

Thus, the strain–stress Equation (2.105) of an angle lamina can also be
written in terms of the engineering constants of an angle lamina in
matrix form as

(2.129)

The preceding six engineering constants of an angle ply can also be
written in terms of the engineering constants of a unidirectional ply
using Equation (2.92) and Equation (2.106) in Equation (2.117)
through Equation (2.119), Equation (2.121), Equation (2.123), and
Equation (2.128):
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(2.130)

, (2.131)

, (2.132)
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(2.135)

Example 2.9

Find the engineering constants of a 60° graphite/epoxy lamina. Use the
properties of a unidirectional graphite/epoxy lamina from Table 2.1.

Solution

From Example 2.7, we have

From Equation (2.117),

m S Ey = − 26 1
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From Equation (2.118),

From Equation (2.119),

.

From Equation (2.121),

From Equation (2.123),

From Equation (2.128),

The variations of the six engineering elastic constants are shown as a
function of the angle for the preceding graphite/epoxy lamina in Figure 2.24
through Figure 2.29.

The variations of the Young’s modulus, Ex and Ey are inverses of each other.
As the fiber orientation (angle of ply) varies from 0° to 90°, the value of Ex
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FIGURE 2.24
Elastic modulus in direction-x as a function of angle of lamina for a graphite/epoxy lamina.

FIGURE 2.25
Elastic modulus in direction-y as a function of angle of lamina for a graphite/epoxy lamina.
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FIGURE 2.26
Poisson’s ratio νxy as a function of angle of lamina for a graphite/epoxy lamina.

FIGURE 2.27
In-plane shear modulus in xy-plane as a function of angle of lamina for a graphite/epoxy lamina.
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FIGURE 2.28
Shear coupling coefficient mx as a function of angle of lamina for a graphite/epoxy lamina.

FIGURE 2.29
Shear coupling coefficient my  as a function of angle of lamina for a graphite/epoxy lamina.
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varies from the value of the longitudinal (E1) to the transverse Young’s
modulus E2. However, the maximum and minimum values of Ex do not
necessarily exist for θ = 0° and θ = 90°, respectively, for every lamina.

Consider the case of a metal matrix composite such as a typical SCS – 6/
Ti6 –Al – 4V composite. The elastic moduli of such a lamina with a 55% fiber
volume fraction is

E1 = 272 GPa

E2 = 200 GPa

ν12 = 0.2770

G12 = 77.33 GPa

In Figure 2.30, the lowest modulus value of Ex is found for θ = 63°. In fact,
the angle of 63° at which Ex is minimum is independent of the fiber volume
fraction, if one uses the “mechanics of materials approach” (Section 3.3.1) to
evaluate the preceding four elastic moduli of a unidirectional lamina. See
Exercise 3.13. 

In Figure 2.27, the shear modulus Gxy  is maximum for θ = 45° and is
minimum for 0 and 90° plies. The shear modulus Gxy  becomes maximum
for 45° because the principal stresses for pure shear load on a 45° ply are
along the material axis.

From Equation (2.133), the expression for Gxy for a 45° ply is 

FIGURE 2.30
Variation of elastic modulus in direction-x as a function of angle of lamina for a typical SCS –
6/Ti6 – Al – 4V lamina. 
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. (2.136)

In Figure 2.28 and Figure 2.29, the shear coupling coefficients mx and my

are maximum at θ = 36.2° and θ = 53.78°, respectively. The values of these
coefficients are quite extreme, showing that the normal-shear coupling terms
have a stronger effect than the Poisson’s effect. This phenomenon of shear
coupling terms is missing in isotropic materials and unidirectional plies, but
cannot be ignored in angle plies.

2.7 Invariant Form of Stiffness and Compliance Matrices for 
an Angle Lamina

Equation (2.104) and Equation (2.106) for the [ ] and [ ] matrices are not
analytically convenient because they do not allow a direct study of the effect
of the angle of the lamina on the [ ] and [ ] matrices. The stiffness
elements can be written in invariant form as6

, (2.137a–f)

where

G
E

E
E

xy/45
1

12
1

2

1 2
° =

+ +
⎛
⎝⎜

⎞
⎠⎟

ν

Q S

Q S

Q U U U11 1 2 32 4= + +Cos Cosθ θ,

Q U U12 4 3 4= − Cos θ,

Q U U U22 1 2 32 4= − +Cos Cosθ θ,

Q
U

U16
2

32
2 4= +Sin Sinθ θ,

Q
U

U26
2

32
2 4= −Sin Sinθ θ,

Q U U U66 1 4 3
1
2

4= − −( ) Cos θ
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(2.138a–d)

The terms U1, U2, U3, and U4 are the four invariants and are combinations
of the Qij, which are invariants as well.

The transformed reduced compliance [ ] matrix can similarly be writ-
ten as

(2.139a–f)

where

U Q Q Q Q1 11 22 12 66
1
8

3 3 2 4= + + +( )

U Q Q2 11 22
1
2

= −( ),

U Q Q Q Q3 11 22 12 66
1
8

2 4= + − −( ),

U Q Q Q Q4 11 22 12 66
1
8

6 4= + + −( ).

S

S V V V11 1 2 32 4= + +Cos Cosθ θ,

S V V12 4 3 4= − Cos θ,

S V V V22 1 2 32 4= − +Cos Cosθ θ,

S V V16 2 32 2 4= +Sin Sinθ θ,

S V V26 2 32 2 4= −Sin Sin andθ θ,

S V V V66 1 4 32 4 4= − −( ) ,Cos θ

V S S S S1 11 22 12 66
1
8

3 3 2= + + +( ),

V S S2 11 22
1
2

= −( ),
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(2.140a–d)

The terms V1, V2, V3, and V4 are invariants and are combinations of Sij, which
are also invariants.

The main advantage of writing the equations in this form is that one can
easily examine the effect of the lamina angle on the reduced stiffness matrix
elements. Also, formulas given by Equation (2.137) and Equation (2.139) are
easier to manipulate for integration, differentiation, etc. The concept is
mainly important in deriving the laminate stiffness properties in Chapter 4.

The elastic moduli of quasi-isotropic laminates that behave like isotropic
material are directly given in terms of these invariants. Because quasi-iso-
tropic laminates have the minimum stiffness of any laminate, these can be
used as a comparative measure of the stiffness of other types of laminates.7

Example 2.10

Starting with the expression for  from Equation (2.104a), ,
, reduce it to the expression for of

Equation (2.137a) — that is,

Solution

Given

,

and substituting

V S S S S3 11 22 12 66
1
8

2= + − −( ),

V S S S S4 11 22 12 66
1
8

6= + + −( ).

11Q Q Q11 11
4= Cos θ

Q Q Q22
4

12 66
2 22 2+ + +Sin Sin Cosθ θ θ( ) 11Q

Q U U U11 1 2 32 4= + +Cos Cosθ θ

Q Q Q Q Q11 11
4

22
4

12 66
2 22 2= + + +Cos Sin Sin Cosθ θ θ θ( )

Cos
Cos2 1 2
2

θ θ= +
,

Sin
Cos2 1 2

2
θ θ= −

,
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we get

,

where

.

Example 2.11

Evaluate the four compliance and four stiffness invariants for a graphite/
epoxy angle lamina. Use the properties for a unidirectional graphite/epoxy
lamina from Table 2.1.

Solution

From Example 2.6, the compliance matrix [S] elements are

Cos
Cos

and2 2
1 4

2
θ θ= +

,

2 2Sin Cos Sinθ θ θ= ,

Sin
Cos2 2

1 4
2

θ θ= −
,

Q U U U11 1 2 32 4= + +Cos Cosθ θ

U Q Q Q Q1 11 22 12 66
1
8

3 3 2 4= + + +( ),

U Q Q2 11 22
1
2

= −( )

U Q Q Q Q3 11 22 12 66
1
8

2 4= + − −( )

S
Pa11

110 5525 10
1= × −. ,

S
Pa12

110 1547 10
1= − × −. ,
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The stiffness matrix [

 

Q

 

] elements are

Using Equation (2.138),

S
Pa22

100 9709 10
1= × −. ,

S
Pa66

90 1395 10
1= × −. .

[ ] [ ] ,Q S= −1

Q Pa11
120 1818 10= ×. ,

Q Pa12
100 2897 10= ×. ,

Q Pa22
110 1035 10= ×. ,

Q Pa66
100 7170 10= ×. .

U1
12 111

8
3 0 1818 10 3 0 1035 10 2 0 289= × + × +[ ( . ) ( . ) ( . 77 10 4 0 7171 10

0 7637 10

10 10

11

× + ×

= ×

) ( . )]

. ,Pa

U

P

2
12 11

11

1
2

0 1818 10 0 1035 10

0 8573 10

= × − ×

= ×

( . . )

. aa,

U3
12 11 101

8
0 1818 10 0 1035 10 2 0 2897 10= × + × − ×[ . . ( . )) ( . )]

. ,

− ×

= ×

4 0 7171 10

0 1971 10

10

11 Pa

U4
12 11 101

8
0 1818 10 0 1035 10 6 0 2897 10= × + × + ×[ . . ( . )) ( . )]

. .

− ×

= ×

4 0 7171 10

0 2261 10

10

11 Pa
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Using Equation (2.140),

2.8 Strength Failure Theories of an Angle Lamina

A successful design of a structure requires efficient and safe use of materials.
Theories need to be developed to compare the state of stress in a material
to failure criteria. It should be noted that failure theories are only stated and
their application is validated by experiments.

For a laminate, the strength is related to the strength of each individual
lamina. This allows for a simple and economical method for finding the
strength of a laminate. Various theories have been developed for studying
the failure of an angle lamina. The theories are generally based on the normal
and shear strengths of a unidirectional lamina.

An isotropic material, such as steel, generally has two strength parameters:
normal strength and shear strength. In some cases, such as concrete or gray
cast iron, the normal strengths are different in the tension and compression.
A simple failure theory for an isotropic material is based on finding the
principal normal stresses and the maximum shear stresses. These maximum

V1
11 111

8
3 0 5525 10 3 0 1547 10 2 0= × + − × +− −[ ( . ) ( . ) ( .99709 10 0 1395 10

0 5553 10
1

10 9

10

× + ×

= ×

− −

−

) . ]

. ,
Pa

V2
11 111

2
0 5525 10 0 1547 10

0 457

= × − − ×

= −

− −[( . ( . )]

. 88 10
110× −

Pa
,

V3
11 101

8
0 5525 10 0 9709 10 2 0 1547 10= × + × − ×− −[ . . ( . −− −

−

− ×

= − ×

11 9

11

0 1395 10

0 4220 10
1

) . ]

. ,
Pa

V4
11 101

8
0 5525 10 0 9709 10 6 0 1547 10= × + × + ×− −[ . . ( . −− −

−

− ×

= − ×

11 9

11

0 1395 10

0 5767 10
1

) . ]

. .
Pa
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stresses, if greater than any of the corresponding ultimate strengths, indicate
failure in the material.

Example 2.12

A cylindrical rod made of gray cast iron is subjected to a uniaxial tensile
load, P. Given:

Cross-sectional area of rod = 2 in.2

Ultimate tensile strength = 25 ksi
Ultimate compressive strength = 95 ksi
Ultimate shear strength = 35 ksi
Modulus of elasticity = 10 Msi

Find the maximum load, P, that can be applied using maximum stress failure
theory.

Solution

At any location, the stress state in the rod is σ = P/2. From a typical Mohr’s
circle analysis, the maximum principal normal stress is P/2. The maximum
shear stress is P/4 and acts at a cross-section 45° to the plane of maximum
normal stress. Comparing these maximum stresses to the corresponding
ultimate strengths, we have

and 

Thus, the maximum load is 50,000 lb.
However, in a lamina, the failure theories are not based on principal normal

stresses and maximum shear stresses. Rather, they are based on the stresses
in the material or local axes because a lamina is orthotropic and its properties
are different at different angles, unlike an isotropic material.

In the case of a unidirectional lamina, there are two material axes: one
parallel to the fibers and one perpendicular to the fibers. Thus, there are four
normal strength parameters for a unidirectional lamina, one for tension and
one for compression, in each of the two material axes directions. The fifth
strength parameter is the shear strength of a unidirectional lamina. The shear
stress, whether positive or negative, does not have an effect on the reported

P
or P

2
25 10 50 0003< × < , ,lb

P
or P

4
35 10 140 0003< × < , .lb
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shear strengths of a unidirectional lamina. However, we will find later that
the sign of the shear stress does affect the strength of an angle lamina. The
five strength parameters of a unidirectional lamina are therefore

Unlike the stiffness parameters, these strength parameters cannot be trans-
formed directly for an angle lamina. Thus, the failure theories are based on
first finding the stresses in the local axes and then using these five strength
parameters of a unidirectional lamina to find whether a lamina has failed.
Four common failure theories are discussed here. Related concepts of
strength ratio and the development of failure envelopes are also discussed.

2.8.1 Maximum Stress Failure Theory

Related to the maximum normal stress theory by Rankine and the maxi-
mum shearing stress theory by Tresca, this theory is similar to those
applied to isotropic materials. The stresses acting on a lamina are resolved
into the normal and shear stresses in the local axes. Failure is predicted
in a lamina, if any of the normal or shear stresses in the local axes of a
lamina is equal to or exceeds the corresponding ultimate strengths of the
unidirectional lamina.

Given the stresses or strains in the global axes of a lamina, one can find
the stresses in the material axes by using Equation (2.94). The lamina is
considered to be failed if

(2.141a–c)

is violated. Note that all five strength parameters are treated as positive
numbers, and the normal stresses are positive if tensile and negative if
compressive.

Each component of stress is compared with the corresponding strength;
thus, each component of stress does not interact with the others.

( ) =1
T

ultσ Ultimate longitudinal tensile strrength (in direction 1),
( ) =1

C
ultσ Ultimate longitudinal compressivee strength (in direction 1),

( ) =2
T

ultσ Ultimate transverse tensile strenngth (in direction 2),
( ) =2

C
ultσ Ultimate transverse compressive sstrength (in direction 2), and

( ) =12 ultτ Ultimate shear strengthin-plane (in plane 12).

− < <( ) ( ) ,σ σ σ1 1 1
C

ult
T

ult or

− < <( ) ( ) ,σ σ σ2 2 2
C

ult
T

ult or

− < <( ) ( )τ τ τ12 12 12ult ult
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Example 2.13

Find the maximum value of S > 0 if a stress of σx = 2S, σy = –3S, and τxy =
4S is applied to the 60° lamina of graphite/epoxy. Use maximum stress
failure theory and the properties of a unidirectional graphite/epoxy lamina
given in Table 2.1.

Solution

Using Equation (2.94), the stresses in the local axes are

From Table 2.1, the ultimate strengths of a unidirectional graphite/epoxy
lamina are

 = 1500 MPa

 = 1500 MPa

 = 40 MPa

 = 246 MPa

 = 68 MPa

Then, using the inequalities (2.141) of the maximum stress failure theory,

–1500 × 106 < 0.1714 × 101S < 1500 × 106

–246 × 106 < –0.2714 × 101S < 40 × 106

–68 × 106 < –0.4165 × 101S < 68 × 106

or

σ
σ
τ

1

2

12

0 2500 0 7500 0 8660
0 75

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
. . .
. 000 0 2500 0 8660

0 4330 0 4330 0 5000
. .

. . .
−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥⎥
⎥
⎥

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
×

− ×

S

S

S

2
3
4

0 1714 10
0 2714

1.
. 110

0 4165 10

1

1− ×

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥.

.S

( )σ1
T

ult

( )σ1
C

ult

( )σ2
T

ult

( )σ2
C

ult

( )τ12 ult
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–875.1 × 106 < S < 875.1 × 106

–14.73 × 106 < S < 90.64 × 106

–16.33 × 106 < S < 16.33 × 106.

All the inequality conditions (and S > 0) are satisfied if 0 < S < 16.33 MPa.
The preceding inequalities also show that the angle lamina will fail in shear.
The maximum stress that can be applied before failure is 

Example 2.14

Find the off-axis shear strength of a 60° graphite/epoxy lamina. Use the
properties of unidirectional graphite/epoxy from Table 2.1 and apply the
maximum stress failure theory.

Solution

The off-axis shear strength of a lamina is defined as the minimum of the
magnitude of positive and negative shear stress (Figure 2.31) that can be
applied to an angle lamina before failure.

Assume the following stress state

σx = 0, σy = 0, τxy = τ .

Then, using the transformation Equation (2.94),

.

Using the inequalities (2.141) of the maximum stress failure theory, we
have

σ σ τx y xyMPa MPa MPa= = − =32 66 48 99 65 32. , . , . .

σ
σ
τ

1

2

12

0 2500 0 7500 0 8660
0 750

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
. . .
. 00 0 2500 0 8660

0 4330 0 4330 0 5000
. .

. . .
−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0
0
τ

σ τ1 0 866= .

σ τ2 0 866− .

τ τ12 0 500= − .
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–1500 < 0.866τ < 1500 or –1732 < τ < 1732

–246 < –0.866τ < 40 or –46.19 < τ < 284.1

–68 < –0.500τ < 68 or –136.0 < τ < 136.0,

which shows that τxy = 46.19 MPa is the largest magnitude of shear stress
that can be applied to the 60° graphite/epoxy lamina. However, the largest
positive shear stress that could be applied is τxy = 136.0 MPa, and the largest
negative shear stress is τxy = –46.19 MPa. 

This shows that the maximum magnitude of allowable shear stress in other
than the material axes’ direction depends on the sign of the shear stress. This
is mainly because the local axes’ stresses in the direction perpendicular to
the fibers are opposite in sign to each other for opposite signs of shear stress
(σ2 = –0.866τ for positive τxy and σ2 = 0.866τ for negative τxy). Because the
tensile strength perpendicular to the fiber direction is much lower than the
compressive strength perpendicular to the fiber direction, the two limiting
values of τxy are different.

FIGURE 2.31
Positive and negative shear stresses applied to an angle lamina.

(a) Positive shear stress  

τxy

τxy

2
y

1

x

(b) Negative shear stress 

τxy

τxy

2
y

1

x
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Table 2.3 shows the maximum negative and positive values of shear stress
that can be applied to different angle plies of graphite/epoxy of Table 2.1.
The minimum magnitude of the two stresses is the shear strength of the
angle lamina.

2.8.2 Strength Ratio

In a failure theory such as the maximum stress failure theory of Section 2.8.1,
it can be determined whether a lamina has failed if any of the inequalities
of Equation (2.141) are violated. However, this does not give the information
about how much the load can be increased if the lamina is safe or how much
the load should be decreased if the lamina has failed. The definition of
strength ratio (SR) is helpful here. The strength ratio is defined as

(2.142)

The concept of strength ratio is applicable to any failure theory. If SR > 1,
then the lamina is safe and the applied stress can be increased by a factor
of SR. If SR < 1, the lamina is unsafe and the applied stress needs to be
reduced by a factor of SR. A value of SR = 1 implies the failure load.

Example 2.15

Assume that one is applying a load of

TABLE 2.3

Effect of Sign of Shear Stress as a Function of Angle 
of Lamina

Angle, 
Degrees

Positive ττττxy

MPa
Negative ττττxy

MPa
Shear strength

MPa

0 68.00 (S) 68.00 (S) 68.00
15 78.52 (S) 78.52 (S) 78.52
30 136.0 (S) 46.19 (2T) 46.19
45 246.0 (2C) 40.00 (2T) 40.00
60 136.0 (S) 46.19 (2T) 46.19
75 78.52 (S) 78.52 (S) 78.52
90 68.00 (S) 68.00 (S) 68.00

Note: The notation in the parentheses denotes the mode
of failure of the angle lamina as follows: 
(1T) — longitudinal tensile failure; 
(1C) — longitudinal compressive failure; 
(2T) — transverse tensile failure; 
(2C) — transverse compressive failure; 
(S) — shear failure.

SR =
Maximum Load Which Can Be Applied

Load AApplied
.
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to a 60° angle lamina of graphite/epoxy. Find the strength ratio using the
maximum stress failure theory.

Solution

If the strength ratio is R, then the maximum stress that can be applied is

.

Following Example 2.13 for finding the local stresses gives 

.

Using the maximum stress failure theory as given by Equation (2.141)
yields

R = 16.33.

Thus, the load that can be applied just before failure is

Note that all the components of the stress vector must be multiplied by the
strength ratio.

2.8.3 Failure Envelopes

A failure envelope is a three-dimensional plot of the combinations of the
normal and shear stresses that can be applied to an angle lamina just before
failure. Because drawing three dimensional graphs can be time consuming,
one may develop failure envelopes for constant shear stress τxy and then use
the two normal stresses σx and σy as the two axes. Then, if the applied stress
is within the failure envelope, the lamina is safe; otherwise, it has failed.

σ σ τx y xyMPa MPa MPa= = − =2 3 4, ,

σ σ τx y xyR R R= = − =2 3 4, ,

σ1
10 1714 10. × R

σ2
10 2714 10= − ×. R

τ12
10 4165 10= − ×. R

σ σ τx y xyMPa MPa= × = × − =16 33 2 16 33 3 16 3. , . ( ) , . 33 4× ,Mpa

σ σ τx y xyMPa MPa MPa= = − =32 66 48 99 65 32. , . , . .
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Example 2.16

Develop a failure envelope for the 60° lamina of graphite/epoxy for a con-
stant shear stress of τxy = 24 MPa. Use the properties for the unidirectional
graphite/epoxy lamina from Table 2.1.

Solution

From Equation (2.94), the stresses in the local axes for a 60° lamina are
given by

where σx and σy are also in units of MPa.
Using the preceding inequalities,

.

Various combinations of (σx, σy) can be found to satisfy the preceding
inequalities. However, the objective is to find the points on the failure enve-
lope. These are combinations of σx and σy , where one of the three inequalities
is just violated and the other two are satisfied. Some of the values of (σx, σy)
obtained on the failure envelope are given in Table 2.4.

Several methods can be used to obtain the points on the failure envelope
for a constant shear stress. One way is to fix the value of σx and find the
maximum value of σy that can be applied without violating any of the
conditions. For example, for σx = 100 MPa, from the inequalities we have

σ σ σ1 0 2500 0 7500 20 78= + +. . . ,x y MPa

σ σ σ2 0 7500 0 2500 20 78= + −. . . ,x y MPa

τ σ σ12 0 4330 0 4330 12 00= − + −. . . ,x y MPa

− < + + <1500 0 2500 0 7500 20 78 1500. . .σ σx y

− < + − <246 0 7500 0 2500 20 78 40. . .σ σx y

− < − + − <68 0 4330 0 4330 12 00 68. . .σ σx y

− < <2061 1939σy ,

− < < −1201 56 88σy . ,

− < <29 33 284 80. . .σy
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The preceding three inequalities show no allowable value of σy for this value
of σx = 100 MPa.

As another example, for σx = 50 MPa, we have from inequalities,

The preceding three inequalities show two maximum allowable values of
the normal stress, σy. These are σy = 93.12 MPa and σy = –79.33 MPa. The
failure envelope for τxy = 24 MPa is shown in Figure 2.32.

2.8.4 Maximum Strain Failure Theory

This theory is based on the maximum normal strain theory by St. Venant
and the maximum shear stress theory by Tresca as applied to isotropic
materials. The strains applied to a lamina are resolved to strains in the local
axes. Failure is predicted in a lamina, if any of the normal or shearing strains
in the local axes of a lamina equal or exceed the corresponding ultimate
strains of the unidirectional lamina. Given the strains/stresses in an angle
lamina, one can find the strains in the local axes. A lamina is considered to
be failed if

TABLE 2.4

Typical Values of (σx, σy) on the
Failure Envelope for Example 2.16

σx (MPa) σy (MPa)

50.0
50.0

–50.0
–50.0
25.0
25.0

–25.0
–25.0

93.1
–79.3
179

–135
168

–104
160

–154

− < <2044 1956σy ,

− < <1051 93 12σy . ,

− < <79 33 234 80. . .σy

− < <( ) ( ) ,ε ε ε1 1 1
C

ult
T

ult or

− < <( ) ( ) ,ε ε ε2 2 2
C

ult
T

ult or

1343_book.fm  Page 146  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



Macromechanical Analysis of a Lamina 147

(2.143a–c)

is violated, where 

= ultimate longitudinal tensile strain (in direction 1)
= ultimate longitudinal compressive strain (in direction 1)
= ultimate transverse tensile strain (in direction 2)
= ultimate transverse compressive strain (in direction 2)
= ultimate in-plane shear strain (in plane 1–2)

The ultimate strains can be found directly from the ultimate strength
parameters and the elastic moduli, assuming the stress–strain response is
linear until failure. The maximum strain failure theory is similar to the
maximum stress failure theory in that no interaction occurs between various
components of strain. However, the two failure theories give different results
because the local strains in a lamina include the Poisson’s ratio effect. In fact,
if the Poisson’s ratio is zero in the unidirectional lamina, the two failure
theories will give identical results.

Example 2.17

Find the maximum value of S > 0 if a stress, σx = 2S, σy = –3S, and τxy = 4S,
is applied to a 60° graphite/epoxy lamina. Use maximum strain failure

FIGURE 2.32
Failure envelopes for constant shear stress using maximum stress failure theory.
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theory. Use the properties of the graphite/epoxy unidirectional lamina given
in Table 2.1.

Solution

In Example 2.6, the compliance matrix [S] was obtained and, in Example 2.13,
the local stresses for this problem were obtained. Then, from Equation (2.77),

Assume a linear relationship between all the stresses and strains until
failure; then the ultimate failure strains are
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The preceding values for the ultimate strains also assume that the com-
pressive and tensile stiffnesses are identical. Using the inequalities (2.143)
and recognizing that S > 0,

or

which give

The maximum value of S before failure is 16.33 MPa. The same maximum
value of S = 16.33 MPa is also found using maximum stress failure theory.
There is no difference between the two values because the mode of failure
is shear. However, if the mode of failure were other than shear, a difference
in the prediction of failure loads would have been present due to the
Poisson’s ratio effect, which couples the normal strains and stresses in the
local axes.

Neither the maximum stress failure theory nor the maximum strain failure
theory has any coupling among the five possible modes of failure. The
following theories are based on the interaction failure theory.

2.8.5 Tsai–Hill Failure Theory

This theory is based on the distortion energy failure theory of Von-Mises’
distortional energy yield criterion for isotropic materials as applied to aniso-
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tropic materials. Distortion energy is actually a part of the total strain energy
in a body. The strain energy in a body consists of two parts; one due to a
change in volume and is called the dilation energy and the second is due to
a change in shape and is called the distortion energy. It is assumed that
failure in the material takes place only when the distortion energy is greater
than the failure distortion energy of the material. Hill8 adopted the Von-
Mises’ distortional energy yield criterion to anisotropic materials. Then, Tsai7

adapted it to a unidirectional lamina. Based on the distortion energy theory,
he proposed that a lamina has failed if

(2.144)

is violated. The components G1, G2, G3, G4, G5, and G6 of the strength criterion
depend on the failure strengths and are found as follows.

1. Apply to a unidirectional lamina; then, the lamina will
fail. Thus, Equation (2.144) reduces to

(2.145)

2. Apply to a unidirectional lamina; then, the lamina will
fail. Thus, Equation (2.144) reduces to

(2.146)

3. Apply to a unidirectional lamina and, assuming that the
normal tensile failure strength is same in directions (2) and (3), the
lamina will fail. Thus, Equation (2.144) reduces to 

(2.147)

4. Apply τ12 = (τ12)ult to a unidirectional lamina; then, the lamina will
fail. Thus, Equation (2.144) reduces to

(2.148)

From Equation (2.145) to Equation (2.148),
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(2.149a–d)

Because the unidirectional lamina is assumed to be under plane stress —
that is, σ3 = τ31 = τ23 = 0, then Equation (2.144) reduces through Equation
(2.149) to

(2.150)

Given the global stresses in a lamina, one can find the local stresses in a
lamina and apply the preceding failure theory to determine whether the
lamina has failed.

Example 2.18

Find the maximum value of S > 0 if a stress of σx = 2S, σy = –3S, and τxy =
4S is applied to a 60° graphite/epoxy lamina. Use Tsai–Hill failure theory.
Use the unidirectional graphite/epoxy lamina properties given in Table 2.1.

Solution

From Example 2.13,
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Using the Tsai–Hill failure theory from Equation (2.150),

1. Unlike the maximum strain and maximum stress failure theories,
the Tsai–Hill failure theory considers the interaction among the three
unidirectional lamina strength parameters.

2. The Tsai–Hill failure theory does not distinguish between the com-
pressive and tensile strengths in its equations. This can result in
underestimation of the maximum loads that can be applied when
compared to other failure theories. For the load of σx = 2 MPa, σy =
–3 MPa, and τxy = 4 MPa, as found in Example 2.15, Example 2.17,
and Example 2.18, the strength ratios are given by
SR = 10.94 (Tsai–Hill failure theory)
SR = 16.33 (maximum stress failure theory)
SR = 16.33 (maximum strain failure theory)

Tsai–Hill failure theory underestimates the failure stress because the trans-
verse tensile strength of a unidirectional lamina is generally much less than
its transverse compressive strength. The compressive strengths are not used
in the Tsai–Hill failure theory, but it can be modified to use corresponding
tensile or compressive strengths in the failure theory as follows

, (2.151)

where
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=  if σ2 < 0;

Y =  if σ2 > 0

=  if σ2 < 0

S = (τ12)ult.

For Example 2.18, the modified Tsai–Hill failure theory given by
Equation (2.151) now gives

σ < 16.06 MPa,

which implies that the strength ratio is SR = 16.06 (modified Tsai–Hill failure
theory). This value is closer to the values obtained using maximum stress
and maximum strain failure theories.

3. The Tsai–Hill failure theory is a unified theory and thus does not
give the mode of failure like the maximum stress and maximum
strain failure theories do. However, one can make a reasonable
guess of the failure mode by calculating
and |τ12/(τ12)ult|. The maximum of these three values gives the asso-
ciated mode of failure. In the modified Tsai–Hill failure theory,
calculate the maximum of |σ1/X1|, |σ2/Y|, and |τ12/S| for the associ-
ated mode of failure.

2.8.6 Tsai–Wu Failure Theory 

This failure theory is based on the total strain energy failure theory of
Beltrami. Tsai-Wu9 applied the failure theory to a lamina in plane stress. A
lamina is considered to be failed if

H1σ1 + H2σ2 + H6τ12 + H11 + H22 +H66 + 2H12σ1σ2 < 1 (2.152)

is violated. This failure theory is more general than the Tsai–Hill failure
theory because it distinguishes between the compressive and tensile
strengths of a lamina.
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The components H1, H2, H6, H11, H22, and H66 of the failure theory are found
using the five strength parameters of a unidirectional lamina as follows:

1. Apply to a unidirectional lamina; the lam-
ina will fail. Equation (2.152) reduces to

(2.153)

2. Apply to a unidirectional lamina; the
lamina will fail. Equation (2.152) reduces to

(2.154)

From Equation (2.153) and Equation (2.154),

(2.155)

(2.156)

3. Apply to a unidirectional lamina; the lam-
ina will fail. Equation (2.152) reduces to

(2.157)

4. Apply to a unidirectional lamina; the
lamina will fail. Equation (2.152) reduces to

(2.158)
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5. Apply 
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 to a unidirectional lamina; it
will fail. Equation (2.152) reduces to

(2.161)

6. Apply 

 

σ

 

1

 

 = 0, 

 

σ

 

2

 

 = 0, and 

 

τ

 

12

 

 = –(

 

τ

 

12

 

)

 

ult

 

 to a unidirectional lamina; the
lamina will fail. Equation (2.152) reduces to

(2.162)

From Equation (2.161) and Equation (2.162),
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The only component of the failure theory that cannot be found directly
from the five strength parameters of the unidirectional lamina is 
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. This
can be found experimentally by knowing a biaxial stress at which the lamina
fails and then substituting the values of 
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 = 0 is the load at which the lamina
fails, then
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The solution of Equation (2.165) gives

(2.166)
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(2.167)

This will give four different values of 
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, each corresponding to the four
tests.
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. The stress 
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 at failure
is noted. If this stress is 
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, then, using Equation (2.94), the local
stresses at failure are

(2.168a–c)

Substituting the preceding local stresses in Equation (2.152),
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Example 2.19

Find the maximum value of S > 0 if a stress σx = 2S, σy = –3S, and τxy = 4S
are applied to a 60° lamina of graphite/epoxy. Use Tsai–Wu failure theory.
Use the properties of a unidirectional graphite/epoxy lamina from Table 2.1.

Solution

From Example 2.13,

From Equations (2.155), (2.156), (2.159), (2.160), (2.163), and (2.164),

H1 =  

H2 =

H6 = 0 Pa–1,

H11 =

H22 =

H66 = .

Using the Mises–Hencky criterion for evaluation of H12, (Equation 2.165c),
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Substituting these values in Equation (2.152), we obtain

or

.

If one uses the other two empirical criteria for H12, per Equation (2.171),
this yields

Summarizing the four failure theories for the same stress state, the value
of S obtained is

S = 16.33 (maximum stress failure theory)
S = 16.33 (maximum strain failure theory)
S = 10.94 (Tsai–Hill failure theory)
S = 16.06 (modified Tsai–Hill failure theory)
S = 22.39 (Tsai–Wu failure theory)

2.8.7 Comparison of Experimental Results with Failure Theories

Tsai7 compared the results from various failure theories to some experimen-
tal results. He considered an angle lamina subjected to a uniaxial load in
the x-direction, σx, as shown in Figure 2.33. The failure stresses were
obtained experimentally for tensile and compressive stresses for various
angles of the lamina.
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203

 

3

 

Micromechanical Analysis of a Lamina

 

Chapter Objectives

 

• Develop concepts of volume and weight fraction (mass fraction) of
fiber and matrix, density, and void fraction in composites.

• Find the nine mechanical and four hygrothermal constants: four
elastic moduli, five strength parameters, two coefficients of thermal
expansion, and two coefficients of moisture expansion of a unidirec-
tional lamina from the individual properties of the fiber and the
matrix, fiber volume fraction, and fiber packing.

• Discuss the experimental characterization of the nine mechanical
and four hygrothermal constants.

 

3.1 Introduction

 

In Chapter 2, the stress–strain relationships, engineering constants, and fail-
ure theories for an angle lamina were developed using four elastic moduli,
five strength parameters, two coefficients of thermal expansion (CTE), and
two coefficients of moisture expansion (CME) for a unidirectional lamina.
These 13 parameters can be found experimentally by conducting several
tension, compression, shear, and hygrothermal tests on unidirectional lamina
(laminates). However, unlike in isotropic materials, experimental evaluation
of these parameters is quite costly and time consuming because they are
functions of several variables: the individual constituents of the composite
material, fiber volume fraction, packing geometry, processing, etc. Thus, the
need and motivation for developing analytical models to find these param-
eters are very important. In this chapter, we will develop simple relationships
for the these parameters in terms of the stiffnesses, strengths, coefficients of
thermal and moisture expansion of the individual constituents of a compos-
ite, fiber volume fraction, packing geometry, etc. An understanding of this
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relationship, called micromechanics of lamina, helps the designer to select
the constituents of a composite material for use in a laminated structure.

Because this text is for a first course in composite materials, details will be
explained only for the simple models based on the mechanics of materials
approach and the semi-empirical approach. Results from other methods based
on advanced topics such as elasticity are also explained for completeness.

As mentioned in Chapter 2, a unidirectional lamina is not homogeneous.
However, one can assume the lamina to be homogeneous by focusing on the
average response of the lamina to mechanical and hygrothermal loads (Figure
3.1). The lamina is simply looked at as a material whose properties are
different in various directions, but not different from one location to another.

Also, the chapter focuses on a unidirectional continuous fiber-reinforced
lamina. This is because it forms the basic building block of a composite
structure, which is generally made of several unidirectional laminae placed
at various angles. The modeling in the evaluation of the parameters is dis-
cussed first. This is followed by examples and experimental methods for
finding these parameters.

 

3.2 Volume and Mass Fractions, Density, and Void Content

 

Before modeling the 13 parameters of a unidirectional composite, we intro-
duce the concept of relative fraction of fibers by volume. This concept is
critical because theoretical formulas for finding the stiffness, strength, and
hygrothermal properties of a unidirectional lamina are a function of fiber
volume fraction. Measurements of the constituents are generally based on
their mass, so fiber mass fractions must also be defined. Moreover, defining
the density of a composite also becomes necessary because its value is used
in the experimental determination of fiber volume and void fractions of a
composite. Also, the value of density is used in the definition of specific
modulus and specific strength in Chapter 1.

 

3.2.1 Volume Fractions

 

Consider a composite consisting of fiber and matrix. Take the following
symbol notations:

 

FIGURE 3.1

 

A nonhomogeneous lamina with fibers and matrix approximated as a homogeneous lamina.

Nonhomogeneous lamina Homogeneous lamina

 

1343_book.fm  Page 204  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



 

Micromechanical Analysis of a Lamina

 

205

 

v

 

c,f,m

 

 = volume of composite, fiber, and matrix, respectively

 

ρ

 

c

 

,f,m

 

 

 

= density of composite, fiber, and matrix, respectively.

Now define the fiber volume fraction 

 

V

 

f

 

 and the matrix volume fraction 

 

V

 

m

 

 as

and

(3.1a, b)

Note that the sum of volume fractions is 

,

from Equation (3.1) as

 

3.2.2 Mass Fractions

 

Consider a composite consisting of fiber and matrix and take the following
symbol notation: 

 

w

 

c,f,m

 

 

 

= mass of composite, fiber, and matrix, respectively.
The mass fraction (weight fraction) of the fibers (

 

W

 

f

 

) and the matrix (

 

W

 

m

 

)
are defined as

(3.2a, b)

Note that the sum of mass fractions is

,

V
v

vf
f

c

= ,

V
v
vm

m

c

= .

V Vf m+ = 1

v v vf m c+ = .

W
w

wf
f

c

= , and

W
w
wm

m

c

= .

W Wf m+ = 1
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from Equation (3.2) as 

.

From the definition of the density of a single material,

(3.3a–c)

Substituting Equation (3.3) in Equation (3.2), the mass fractions and vol-
ume fractions are related as

(3.4a, b)

in terms of the fiber and matrix volume fractions. In terms of individual
constituent properties, the mass fractions and volume fractions are related by

. (3.5a, b)

One should always state the basis of calculating the fiber content of a
composite. It is given in terms of mass or volume. Based on Equation (3.4),
it is evident that volume and mass fractions are not equal and that the
mismatch between the mass and volume fractions increases as the ratio
between the density of fiber and matrix differs from one.

f m cw + w = w

w r v

w r v

w r v

c c c

f f f

m m m

=

=

=

,

,

.

and

f
f

c
fW = V ,

ρ
ρ

and

m
m

c
mW = V ,

ρ
ρ

f

f

m

f

m
f m

fW =

V + V

V ,

ρ
ρ

ρ
ρ

W
V V

Vm
f

m
m m

m=
− +

1

1
ρ
ρ

( )
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3.2.3 Density

 

The derivation of the density of the composite in terms of volume fractions
is found as follows. The mass of composite 

 

w

 

c

 

 is the sum of the mass of the
fibers 

 

w

 

f

 

 and the mass of the matrix 

 

w

 

m

 

 as

(3.6)

Substituting Equation (3.3) in Equation (3.6) yields

and

. (3.7)

Using the definitions of fiber and matrix volume fractions from Equation
(3.1),

(3.8)

Now, consider that the volume of a composite 

 

v

 

c

 

 is the sum of the volumes
of the fiber 

 

v

 

f

 

 and matrix (

 

v

 

m

 

):

. (3.9)

The density of the composite in terms of mass fractions can be found as

(3.10)

 

Example 3.1

 

A glass/epoxy lamina consists of a 70% fiber volume fraction. Use proper-
ties of glass and epoxy from Table 3.1* and Table 3.2, respectively, to deter-
mine the 

 

* Table 3.1 and Table 3.2 give the typical properties of common fibers and matrices in the SI sys-
tem of units, respectively. Note that fibers such as graphite and aramids are transversely isotro-
pic, but matrices are generally isotropic. The typical properties of common fibers and matrices
are again given in Table 3.3 and Table 3.4, respectively, in the USCS system of units.

w w wc f m= + .

ρ ρ ρc c f f m mv v v= + ,

ρ ρ ρc f
f

c
m

m

c

v

v
v
v

= +

c f f m m= V + V .ρ ρ ρ

v v vc f m= +

1
= W + W .

c

f

f

m

mρ ρ ρ
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1. Density of lamina
2. Mass fractions of the glass and epoxy
3. Volume of composite lamina if the mass of the lamina is 4 kg
4. Volume and mass of glass and epoxy in part (3)

 

Solution

 

1. From Table 3.1, the density of the fiber is

 

TABLE 3.1

 

Typical Properties of Fibers (SI System of Units)

 

Property Units Graphite Glass Aramid

 

Axial modulus
Transverse modulus
Axial Poisson’s ratio
Transverse Poisson’s ratio
Axial shear modulus
Axial coefficient of thermal expansion
Transverse coefficient of thermal expansion
Axial tensile strength
Axial compressive strength
Transverse tensile strength
Transverse compressive strength
Shear strength
Specific gravity

GPa
GPa
—
—

GPa

 

μ

 

m/m/

 

°

 

C

 

μ

 

m/m/

 

°

 

C
MPa
MPa
MPa
MPa
MPa

—

230
22

0.30
0.35

22
–1.3

7.0
2067
1999

77
42
36

1.8

85
85

0.20
0.20

35.42
5
5

1550
1550
1550
1550

35
2.5

124
8
0.36
0.37
3

–5.0
4.1

1379
276

7
7

21
1.4

 

TABLE 3.2

 

Typical Properties of Matrices (SI System of Units)

 

Property Units Epoxy Aluminum Polyamide

 

Axial modulus
Transverse modulus
Axial Poisson’s ratio
Transverse Poisson’s ratio
Axial shear modulus
Coefficient of thermal expansion
Coefficient of moisture expansion
Axial tensile strength
Axial compressive strength
Transverse tensile strength
Transverse compressive strength
Shear strength
Specific gravity

GPa
GPa
—
—

GPa

 

μ

 

m/m/

 

°

 

C
m/m/kg/kg

MPa
MPa
MPa
MPa
MPa

—

3.4
3.4
0.30
0.30
1.308

63
0.33

72
102
72

102
34

1.2

71
71
0.30
0.30

27
23
0.00

276
276
276
276
138

2.7

3.5
3.5
0.35
0.35
1.3

90
0.33

54
108

54
108

54
1.2

f
3= 2500 kg / m .ρ
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From Table 3.2, the density of the matrix is

Using Equation (3.8), the density of the composite is

2. Using Equation (3.4), the fiber and matrix mass fractions are

 

TABLE 3.3

 

Typical Properties of Fibers (USCS System of Units)

 

Property Units Graphite Glass Aramid

 

Axial modulus
Transverse modulus
Axial Poisson’s ratio
Transverse Poisson’s ratio
Axial shear modulus
Axial coefficient of thermal expansion
Transverse coefficient of thermal expansion
Axial tensile strength
Axial compressive strength
Transverse tensile strength
Transverse compressive strength
Shear strength
Specific gravity

Msi
Msi
—
—

Msi

 

μ

 

in./in./

 

°

 

F

 

μ

 

in./in./

 

°

 

F
ksi
ksi
ksi
ksi
ksi
—

33.35
3.19
0.30
0.35
3.19

–0.7222
3.889

299.7
289.8

11.16
6.09
5.22
1.8

12.33
12.33
0.20
0.20
5.136
2.778
2.778

224.8
224.8
224.8
224.8

5.08
2.5

17.98
1.16
0.36
0.37
0.435

–2.778
2.278

200.0
40.02
1.015
1.015
3.045
1.4

 

TABLE 3.4

 

Typical Properties of Matrices (USCS System of Units)

 

Property Units Epoxy Aluminum Polyamide

 

Axial modulus
Transverse modulus
Axial Poisson’s ratio
Transverse Poisson’s ratio
Axial shear modulus
Coefficient of thermal expansion
Coefficient of moisture expansion
Axial tensile strength
Axial compressive strength
Transverse tensile strength
Transverse compressive strength
Shear strength
Specific gravity

Msi
Msi
—
—

Msi

 

μ

 

in./in./

 

°

 

F
in./in./lb/lb

ksi
ksi
ksi
ksi
ksi
—

0.493
0.493
0.30
0.30
0.1897

35
0.33

10.44
14.79
10.44
14.79
4.93
1.2

10.30
10.30
0.30
0.30
3.915

12.78
0.00

40.02
40.02
40.02
40.02
20.01
2.7

0.5075
0.5075
0.35
0.35
0.1885

50
0.33
7.83

15.66
7.83

15.66
7.83
1.2

ρm kg m= 1200 3/ .

ρc

kg m

= +

=

( )( . ) ( )( . )

/ .

2500 0 7 1200 0 3

2110 3
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.

Note that the sum of the mass fractions,

3. The volume of composite is 

.

4. The volume of the fiber is

.

The volume of the matrix is

Wf = ×

=

2500
2110

0 3

0 8294

.

.

Wm = ×

=

1200
2110

0 3

0 1706

.

.

W Wf m+ = +

=

0 8294 0 1706

1 000

. .

. .

v
w

c
c

c

=
ρ

= 4
2110

= × −1 896 10 3 3. m

v V vf f c=

= × −( . )( . )0 7 1 896 10 3

= × −1 327 10 3 3. m

v V vm m c=

=(0.3)(0.1896 × −10 3)
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.

The mass of the fiber is

.

The mass of the matrix is

= 0.6826 

 

kg .

 

3.2.4 Void Content

 

During the manufacture of a composite, voids are introduced in the com-
posite as shown in Figure 3.2. This causes the theoretical density of the
composite to be higher than the actual density. Also, the void content of a

 

FIGURE 3.2

 

Photomicrographs of cross-section of a lamina with voids.

= × −0 5688 10 3 3. m

w vf f f= ρ

= × −( )( . )2500 1 327 10 3

= 3 318. kg

w vm m m= ρ

= × −( )( . )1200 0 5688 10 3
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composite is detrimental to its mechanical properties. These detriments
include lower 

• Shear stiffness and strength
• Compressive strengths
• Transverse tensile strengths
• Fatigue resistance
• Moisture resistance

A decrease of 2 to 10% in the preceding matrix-dominated properties gen-
erally takes place with every 1% increase in the void content.

 

1

 

For composites with a certain volume of voids 

 

V

 

v

 

 the volume fraction of
voids 

 

V

 

v

 

 is defined as

(3.11)

Then, the total volume of a composite (

 

v

 

c

 

) with voids is given by

(3.12)

By definition of the experimental density 

 

ρ

 

ce

 

 of a composite, the actual
volume of the composite is

(3.13)

and, by the definition of the theoretical density 

 

ρ

 

ct

 

 of the composite, the
theoretical volume of the composite is

(3.14)

Then, substituting the preceding expressions (3.13) and (3.14) in Equation
(3.12),

.

The volume of void is given by

V
v
vv

v

c

= .

v v v vc f m v= + + .

v
w

c
c

ce

=
ρ

,

v v
w

f m
c

ct

+ =
ρ

.

w w
vc

ce

c

ct
vρ ρ

= +
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(3.15)

Substituting Equation (3.13) and Equation (3.15) in Equation (3.11), the
volume fraction of the voids is

(3.16)

Example 3.2

A graphite/epoxy cuboid specimen with voids has dimensions of a × b × c
and its mass is Mc. After it is put it into a mixture of sulfuric acid and hydrogen
peroxide, the remaining graphite fibers have a mass Mf. From independent
tests, the densities of graphite and epoxy are ρf and ρm, respectively. Find the
volume fraction of the voids in terms of a, b, c, Mf, Mc, ρf, and ρm.

Solution

The total volume of the composite vc is the sum total of the volume of fiber
vf , matrix vm, and voids vv:

(3.17)

From the definition of density,

(3.18a)

(3.18b)

The specimen is a cuboid, so the volume of the composite is 

(3.19)

Substituting Equation (3.18) and Equation (3.19) in Equation (3.17) gives

v
w

v
c

ce

ct ce

ct

= −⎛
⎝⎜

⎞
⎠⎟ρ

ρ ρ
ρ

.

V
v
vv

v

c

ct ce

ct

=

= −ρ ρ
ρ

.

v v v vc f m v= + + .

v
M

f
f

f

=
ρ

,

v
M M

m
c f

m

=
−
ρ

.

v abcc = .
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,

and the volume fraction of voids then is

(3.20)

Alternative Solution

The preceding problem can also be solved by using Equation (3.16). The
theoretical density of the composite is

, (3.21)

where Vf′ is the theoretical fiber volume fraction given as

(3.22)

The experimental density of the composite is

(3.23)

Substituting Equation (3.21) through Equation (3.23) in the definition of
void volume fractions given by Equation (3.16),

(3.24)

Experimental determination: the fiber volume fractions of the constituents of
a composite are found generally by the burn or the acid digestion tests. These
tests involve taking a sample of composite and weighing it. Then the density

abc
M M M

vf

f

c f

m
v= +

−
+

ρ ρ

V
v
abc abc

M M M
v

v f

f

c f

m

= = − +
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
1

ρ ρ

ρ ρ ρct f f m fV V= ′ + − ′( )1

′ =
+

V
volume of fibers

volume of fibers volumef of matrix

′ =
+

−
V

M

M M Mf

f

f

f

f

c f

m

ρ

ρ ρ

.

ρce
cM

abc
= .

V
abc

M M M
v

f

f

c f

m

= − +
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
1

ρ ρ
.
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of the specimen is found by the liquid displacement method in which the
sample is weighed in air and then in water. The density of the composite is
given by

, (3.25)

where
wc = weight of composite
wi = weight of composite when immersed in water
ρw = density of water (1000 kg/m3 or 62.4 lb/ft3)

For specimens that float in water, a sinker is attached. The density of the
composite is then found by

, (3.26)

where
wc = weight of composite
ws = weight of sinker when immersed in water
ww = weight of sinker and specimen when immersed in water

The sample is then dissolved in an acid solution or burned.2 Glass-based
composites are burned, and carbon and aramid-based composites are
digested in solutions. Carbon and aramid-based composites cannot be
burned because carbon oxidizes in air above 300°C (572°F) and the aramid
fiber can decompose at high temperatures. Epoxy-based composites can be
digested by nitric acid or a hot mixture of ethylene glycol and potassium
hydroxide; polyamide- and phenolic resin-based composites use mixtures of
sulfuric acid and hydrogen peroxide. When digestion or burning is complete,
the remaining fibers are washed and dried several times and then weighed.
The fiber and matrix weight fractions can be found using Equation (3.2). The
densities of the fiber and the matrix are known; thus, one can use Equation
(3.4) to determine the volume fraction of the constituents of the composite
and Equation (3.8) to calculate the theoretical density of the composite.

3.3 Evaluation of the Four Elastic Moduli

As shown in Section 2.4.3, there are four elastic moduli of a unidirectional
lamina:

ρ ρc
c

c i
w

w
w w

=
−

ρ ρc
c

c s w
w

w
w w w

=
+ −
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• Longitudinal Young’s modulus, E1

• Transverse Young’s modulus, E2

• Major Poisson’s ratio, ν12

• In-plane shear modulus, G12

Three approaches for determining the four elastic moduli are discussed next.

3.3.1 Strength of Materials Approach

From a unidirectional lamina, take a representative volume element* that
consists of the fiber surrounded by the matrix (Figure 3.3). This representa-
tive volume element (RVE) can be further represented as rectangular blocks.
The fiber, matrix, and the composite are assumed to be of the same width,
h, but of thicknesses tf , tm , and tc, respectively. The area of the fiber is given by

. (3.27a)

The area of the matrix is given by

(3.27b)

and the area of the composite is given by

(3.27c)

The two areas are chosen in the proportion of their volume fractions so
that the fiber volume fraction is defined as

(3.28a)

and the matrix fiber volume fraction Vm is

* A representative volume element (RVE) of a material is the smallest part of the material that
represents the material as a whole. It could be otherwise intractable to account for the distribu-
tion of the constituents of the material.

A t hf f=

A t hm m= ,

A t hc c= .

V
A

A

t

t

f
f

c

f

c

=

= ,
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(3.28b)

The following assumptions are made in the strength of materials approach
model:

• The bond between fibers and matrix is perfect.
• The elastic moduli, diameters, and space between fibers are uniform.
• The fibers are continuous and parallel.

FIGURE 3.3
Representative volume element of a unidirectional lamina.

3

Lc

tm/2
tr

tm/2

tc

tc

h

h

2

1

V
A
A

t
t

V

m
m

c

m

c

f

=

=

= −1 .
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• The fibers and matrix follow Hooke’s law (linearly elastic).
• The fibers possess uniform strength.
• The composite is free of voids.

3.3.1.1 Longitudinal Young’s Modulus

From Figure 3.4, under a uniaxial load Fc on the composite RVE, the load is
shared by the fiber Ff and the matrix Fm so that

(3.29)

The loads taken by the fiber, the matrix, and the composite can be written
in terms of the stresses in these components and cross-sectional areas of these
components as

(3.30a)

(3.30b)

(3.30c)

where
σc,f,m = stress in composite, fiber, and matrix, respectively
Ac,f,m = area of composite, fiber, and matrix, respectively

Assuming that the fibers, matrix, and composite follow Hooke’s law and
that the fibers and the matrix are isotropic, the stress–strain relationship for
each component and the composite is

FIGURE 3.4
A longitudinal stress applied to the representative volume element to calculate the longitudinal
Young’s modulus for a unidirectional lamina.

tm/2

tm/2
tf

tc

σc
σc

h

F F Fc f m= + .

F Ac c c= σ ,

F Af f f= σ ,

F Am m m= σ ,
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(3.31a)

(3.31b)

and

(3.31c)

where
εc,f,m = strains in composite, fiber, and matrix, respectively
E1,f,m = elastic moduli of composite, fiber, and matrix, respectively

Substituting Equation (3.30) and Equation (3.31) in Equation (3.29) yields

(3.32)

The strains in the composite, fiber, and matrix are equal (εc = εf = εm); then,
from Equation (3.32),

(3.33)

Using Equation (3.28), for definitions of volume fractions,

(3.34)

Equation 3.34 gives the longitudinal Young’s modulus as a weighted mean
of the fiber and matrix modulus. It is also called the rule of mixtures. 

The ratio of the load taken by the fibers Ff to the load taken by the
composite Fc is a measure of the load shared by the fibers. From Equation
(3.30) and Equation (3.31),

(3.35)

In Figure 3.5, the ratio of the load carried by the fibers to the load taken
by the composite is plotted as a function of fiber-to-matrix Young’s moduli
ratio Ef/Em for the constant fiber volume fraction Vf . It shows that as the fiber
to matrix moduli ratio increases, the load taken by the fiber increases tre-
mendously.

σ εc cE= 1 ,

σ εf f fE= ,

σ εm m mE= ,

E A E A E Ac c f f f m m m1ε ε ε= + .

E E
A

A
E

A
Af

f

c
m

m

c
1 = + .

E E V E Vf f m m1 = + .

F

F

E

E
Vf

c

f
f=

1

.
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Example 3.3

Find the longitudinal elastic modulus of a unidirectional glass/epoxy lamina
with a 70% fiber volume fraction. Use the properties of glass and epoxy from
Table 3.1 and Table 3.2, respectively. Also, find the ratio of the load taken by
the fibers to that of the composite.

Solution

From Table 3.1, the Young’s modulus of the fiber is

Ef = 85 GPa.

From Table 3.2, the Young’s modulus of the matrix is

Em = 3.4 GPa.

Using Equation (3.34), the longitudinal elastic modulus of the unidirectional
lamina is

Using Equation (3.35), the ratio of the load taken by the fibers to that of the
composite is

FIGURE 3.5
Fraction of load of composite carried by fibers as a function of fiber volume fraction for constant
fiber to matrix moduli ratio.
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Figure 3.6 shows the linear relationship between the longitudinal Young’s
modulus of a unidirectional lamina and fiber volume fraction for a typical
graphite/epoxy composite per Equation (3.34). It also shows that Equation
(3.34) predicts results that are close to the experimental data points.3

3.3.1.2 Transverse Young’s Modulus

Assume now that, as shown in Figure 3.7, the composite is stressed in the
transverse direction. The fibers and matrix are again represented by rectan-
gular blocks as shown. The fiber, the matrix, and composite stresses are
equal. Thus,

(3.36)

where σc,f,m = stress in composite, fiber, and matrix, respectively.
Now, the transverse extension in the composite Δc is the sum of the trans-

verse extension in the fiber Δf , and that is the matrix, Δm.

FIGURE 3.6
Longitudinal Young’s modulus as function of fiber volume fraction and comparison with
experimental data points for a typical glass/polyester lamina. (Experimental data points repro-
duced with permission of ASM International.)
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222 Mechanics of Composite Materials, Second Edition

(3.37)

Now, by the definition of normal strain,

(3.38a)

(3.38b)

and

(3.38c)

where
tc,f,m = thickness of the composite, fiber and matrix, respectively
εc,f,m = normal transverse strain in the composite, fiber, and matrix, 

respectively

Also, by using Hooke’s law for the fiber, matrix, and composite, the normal
strains in the composite, fiber, and matrix are

(3.39a)

(3.39b)

and

(3.39c)

FIGURE 3.7
A transverse stress applied to a representative volume element used to calculate transverse
Young’s modulus of a unidirectional lamina.
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Micromechanical Analysis of a Lamina 223

Substituting Equation (3.38) and Equation (3.39) in Equation (3.37) and
using Equation (3.36) gives

(3.40)

Because the thickness fractions are the same as the volume fractions as
the other two dimensions are equal for the fiber and the matrix (see Equa-
tion 3.28):

(3.41)

Equation (3.41) is based on the weighted mean of the compliance of the fiber
and the matrix. 

Example 3.4

Find the transverse Young’s modulus of a glass/epoxy lamina with a fiber
volume fraction of 70%. Use the properties of glass and epoxy from Table
3.1 and Table 3.2, respectively.

Solution

From Table 3.1, the Young’s modulus of the fiber is

Ef = 85 GPa.

From Table 3.2, the Young’s modulus of the matrix is

Em = 3.4 GPa.

Using Equation (3.41), the transverse Young’s modulus, E2, is

Figure 3.8 plots the transverse Young’s modulus as a function of fiber
volume fraction for constant fiber-to-matrix elastic moduli ratio, Ef/Em. For
metal and ceramic matrix composites, the fiber and matrix elastic moduli
are of the same order. (For example, for a SiC/aluminum metal matrix
composite, Ef/Em = 4 and for a SiC/CAS ceramic matrix composite, Ef/Em =
2). The transverse Young’s modulus of the composite in such cases changes
more smoothly as a function of the fiber volume fraction.
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For polymeric composites, the fiber-to-matrix moduli ratio is very high.
(For example, for a glass/epoxy polymer matrix composite, Ef/Em = 25). The
transverse Young’s modulus of the composite in such cases changes appre-
ciably only for large fiber volume fractions. Figure 3.8 shows that, for high
Ef/Em ratios, the contribution of the fiber modulus only increases substantially
for a fiber volume fraction greater than 80%. These fiber volume fractions are
not practical and in many cases are physically impossible due to the geometry
of fiber packing. Figure 3.9 shows various possibilities of fiber packing. Note
that the ratio of the diameter, d, to fiber spacing, s, d/s varies with geometrical
packing. For circular fibers with square array packing (Figure 3.9a),

(3.42a)

This gives a maximum fiber volume fraction of 78.54% as s ≥ d. For circular
fibers with hexagonal array packing (Figure 3.9b),

(3.42b)

FIGURE 3.8
Transverse Young’s modulus as a function of fiber volume fraction for constant fiber to matrix
moduli ratio.
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Micromechanical Analysis of a Lamina 225

This gives a maximum fiber volume fraction of 90.69% because s ≥ d. These
maximum fiber volume fractions are not practical to use because the fibers
touch each other and thus have surfaces where the matrix cannot wet out
the fibers.

In Figure 3.10, the transverse Young’s modulus is plotted as a function of
fiber volume fraction using Equation (3.41) for a typical boron/epoxy lamina.
Also given are the experimental data points.4 In Figure 3.10, the experimental
and analytical results are not as close to each other as they are for the
longitudinal Young’s modulus in Figure 3.6.

FIGURE 3.9
Fiber to fiber spacing in (a) square packing geometry and (b) hexagonal packing geometry.
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226 Mechanics of Composite Materials, Second Edition

FIGURE 3.10
Theoretical values of transverse Young’s modulus as a function of fiber volume fraction for a
Boron/Epoxy unidirectional lamina (Ef = 414 GPa, νf = 0.2, Em = 4.14 GPa, νm = 0.35) and
comparison with experimental values. Figure (b) zooms figure (a) for fiber volume fraction
between 0.45 and 0.75. (Experimental data from Hashin, Z., NASA tech. rep. contract no. NAS1-
8818, November 1970.)
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Micromechanical Analysis of a Lamina 227

3.3.1.3 Major Poisson’s Ratio

The major Poisson’s ratio is defined as the negative of the ratio of the normal
strain in the transverse direction to the normal strain in the longitudinal
direction, when a normal load is applied in the longitudinal direction.
Assume a composite is loaded in the direction parallel to the fibers, as shown
in Figure 3.11. The fibers and matrix are again represented by rectangular
blocks. The deformations in the transverse direction of the composite  is
the sum of the transverse deformations of the fiber and the matrix  as

(3.43)

Using the definition of normal strains,

(3.44a)

(3.44b)

FIGURE 3.11
A longitudinal stress applied to a representative volume element to calculate Poisson’s ratio of
unidirectional lamina.
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and

(3.44c)

where εc,f,m = transverse strains in composite, fiber, and matrix, respectively.
Substituting Equation (3.44) in Equation (3.43),

(3.45)

The Poisson’s ratios for the fiber, matrix, and composite, respectively, are

(3.46a)

(3.46b)

and

. (3.46c)

Substituting in Equation (3.45),

(3.47)

where
v12,f,m = Poisson’s ratio of composite, fiber, and matrix, respectively

 = longitudinal strains of composite, fiber and matrix, respec-
tively

However, the strains in the composite, fiber, and matrix are assumed to
be the equal in the longitudinal direction , which, from Equation
(3.47), gives

(3.48)

ε δ
c
T c

T

ct
= ,

t t tc c
T

f f
T

m m
Tε ε ε= + .

ν
ε
εf

f
T

f
L= − ,

ν ε
εm

m
T

m
L= − ,

ν ε
ε12 = − c

T

c
L

− = − −t t tc c
L

f f f
L

m m m
Lν ε ν ε ν ε12 ,

ν12, ,f m

εc f m
L
, ,

( )ε ε εc
L

f
L

m
L= =

t t tc f f m mν ν ν12 = + ,

ν ν ν12 = +f
f

c
m

m

c

t

t
t
t

.

1343_book.fm  Page 228  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



Micromechanical Analysis of a Lamina 229

Because the thickness fractions are the same as the volume fractions, per
Equation (3.28),

(3.49)

Example 3.5

Find the major and minor Poisson’s ratio of a glass/epoxy lamina with a
70% fiber volume fraction. Use the properties of glass and epoxy from Table
3.1 and Table 3.2, respectively.

Solution

From Table 3.1, the Poisson’s ratio of the fiber is

νf = 0.2.

From Table 3.2, the Poisson’s ratio of the matrix is

νm = 0.3.

Using Equation (3.49), the major Poisson’s ratio is

From Example 3.3, the longitudinal Young’s modulus is

E1 = 60.52 GPa

and, from Example 3.4, the transverse Young’s modulus is

E2 = 10.37 GPa.

Then, the minor Poisson’s ratio from Equation (2.83) is

3.3.1.4 In-Plane Shear Modulus

Apply a pure shear stress τc to a lamina as shown in Figure 3.12. The fibers
and matrix are represented by rectangular blocks as shown. The resulting
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230 Mechanics of Composite Materials, Second Edition

shear deformations of the composite δc the fiber δf , and the matrix δm are
related by

. (3.50)

From the definition of shear strains,

, (3.51a)

, (3.51b)

and

, (3.51c)

where
γc,f,m = shearing strains in the composite, fiber, and matrix, respec-

tively
tc,f,m = thickness of the composite, fiber, and matrix, respectively.

From Hooke’s law for the fiber, the matrix, and the composite,

(3.52a)

(3.52b)

and

FIGURE 3.12
An in-plane shear stress applied to a representative volume element for finding in-plane shear
modulus of a unidirectional lamina.
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Micromechanical Analysis of a Lamina 231

(3.52c)

where G12,f,m = shear moduli of composite, fiber, and matrix, respectively.
From Equation (3.50) through Equation (3.52),

(3.53)

The shear stresses in the fiber, matrix, and composite are assumed to be
equal (τc = τf = τm), giving

(3.54)

Because the thickness fractions are equal to the volume fractions, per
Equation (3.28),

(3.55)

Example 3.6

Find the in-plane shear modulus of a glass/epoxy lamina with a 70% fiber
volume fraction. Use properties of glass and epoxy from Table 3.1 and Table
3.2, respectively.

Solution

The glass fibers and the epoxy matrix have isotropic properties. From Table
3.1, the Young’s modulus of the fiber is

Ef = 85 GPa

and the Poisson’s ratio of the fiber is

νf = 0.2.

The shear modulus of the fiber
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From Table 3.2, the Young’s modulus of the matrix is

Em = 3.4 GPa

and the Poisson’s ratio of the fiber is

νm = 0.3.

The shear modulus of the matrix is

From Equation (3.55), the in-plane shear modulus of the unidirectional
lamina is

Figure 3.13a and Figure 3.13b show the analytical values from Equation
(3.55) of the in-plane shear modulus as a function of fiber volume fraction
for a typical glass/epoxy lamina. Experimental values4 are also plotted in
the same figure.

3.3.2 Semi-Empirical Models

The values obtained for transverse Young’s modulus and in-plane shear
modulus through Equation (3.41) and Equation (3.55), respectively, do not
agree well with the experimental results shown in Figure 3.10 and Figure
3.13. This establishes a need for better modeling techniques. These tech-
niques include numerical methods, such as finite element and finite differ-
ence, and boundary element methods, elasticity solution, and variational
principal models.5 Unfortunately, these models are available only as compli-
cated equations or in graphical form. Due to these difficulties, semi-empirical
models have been developed for design purposes. The most useful of these
models include those of Halphin and Tsai6 because they can be used over a
wide range of elastic properties and fiber volume fractions.

Halphin and Tsai6 developed their models as simple equations by curve fitting
to results that are based on elasticity. The equations are semi-empirical in nature
because involved parameters in the curve fitting carry physical meaning.
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Micromechanical Analysis of a Lamina 233

FIGURE 3.13
Theoretical values of in-plane shear modulus as a function of fiber volume fraction and com-
parison with experimental values for a unidirectional glass/epoxy lamina (Gf = 30.19 GPa, Gm

= 1.83 GPa). Figure (b) zooms figure (a) for fiber volume fraction between 0.45 and 0.75.
(Experimental data from Hashin, Z., NASA tech. rep. contract No. NAS1-8818, November 1970.)
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3.3.2.1 Longitudinal Young’s Modulus

The Halphin–Tsai equation for the longitudinal Young’s modulus, E1, is the
same as that obtained through the strength of materials approach — that is,

(3.56)

3.3.2.2 Transverse Young’s Modulus

The transverse Young’s modulus, E2, is given by6

(3.57)

where

(3.58)

The term ξ is called the reinforcing factor and depends on the following:

• Fiber geometry
• Packing geometry
• Loading conditions

Halphin and Tsai6 obtained the value of the reinforcing factor ξ by com-
paring Equation (3.57) and Equation (3.58) to the solutions obtained from
the elasticity solutions. For example, for a fiber geometry of circular fibers
in a packing geometry of a square array, ξ = 2. For a rectangular fiber cross-
section of length a and width b in a hexagonal array, ξ = 2(a/b), where b is
in the direction of loading.6 The concept of direction of loading is illustrated
in Figure 3.14.

Example 3.7

Find the transverse Young’s modulus for a glass/epoxy lamina with a 70%
fiber volume fraction. Use the properties for glass and epoxy from Table 3.1
and Table 3.2, respectively. Use Halphin–Tsai equations for a circular fiber
in a square array packing geometry. 

Solution

Because the fibers are circular and packed in a square array, the reinforcing
factor ξ = 2. From Table 3.1, the Young’s modulus of the fiber is Ef = 85 GPa.
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Micromechanical Analysis of a Lamina 235

From Table 3.2, the Young’s modulus of the matrix is Em = 3.4 GPa.
From Equation (3.58),

From Equation (3.57), the transverse Young’s modulus of the unidirectional
lamina is

For the same problem, from Example 3.4, this value of E2 was found to be
10.37 GPa by the mechanics of materials approach.

Figure 3.15a and Figure 3.15b show the transverse Young’s modulus as a
function of fiber volume fraction for a typical boron/epoxy composite. The
Halphin–Tsai equations (3.57) and the mechanics of materials approach
Equation (3.41) curves are shown and compared to experimental data points.

As mentioned previously, the parameters ξ and η have a physical meaning.
For example,

FIGURE 3.14
Concept of direction of loading for calculation of transverse Young’s modulus by Halphin–Tsai
equations.
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Ef/Em = 1 implies η = 0, (homogeneous medium)
Ef/Em → ∞ implies η = 1 (rigid inclusions)

Ef/Em → 0 implies (voids)

3.3.2.3 Major Poisson’s Ratio

The Halphin–Tsai equation for the major Poisson’s ratio, ν12, is the same as
that obtained using the strength of materials approach — that is,

FIGURE 3.15
Theoretical values of transverse Young’s modulus as a function of fiber volume fraction and
comparison with experimental values for boron/epoxy unidirectional lamina (Ef = 414 GPa, νf

= 0.2, Em = 4.14 GPa, νm = 0.35). Figure (b) zooms figure (a) for fiber volume fraction between
0.45 and 0.75. (Experimental data from Hashin, Z., NASA tech. rep. contract no. NAS1-8818,
November 1970.)
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(3.59)

3.3.2.4 In-Plane Shear Modulus

The Halphin–Tsai6 equation for the in-plane shear modulus, G12, is

(3.60)

where

(3.61)

The value of the reinforcing factor, ξ, depends on fiber geometry, packing
geometry, and loading conditions. For example, for circular fibers in a square
array, ξ = 1. For a rectangular fiber cross-sectional area of length a and width
b in a hexagonal array, , where a is the direction of loading.
The concept of the direction of loading7 is given in Figure 3.16.

The value of ξ = 1 for circular fibers in a square array gives reasonable
results only for fiber volume fractions of up to 0.5. For example, for a typical
glass/epoxy lamina with a fiber volume fraction of 0.75, the value of in-
plane shear modulus using the Halphin–Tsai equation with ξ = 1 is 30%
lower than that given by elasticity solutions. Hewitt and Malherbe8 sug-
gested choosing a function,

. (3.62)

FIGURE 3.16
Concept of direction of loading to calculate in-plane shear modulus by Halphin–Tsai equations.
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Example 3.8

Using Halphin–Tsai equations, find the shear modulus of a glass/epoxy
composite with a 70% fiber volume fraction. Use the properties of glass
and epoxy from Table 3.1 and Table 3.2, respectively. Assume that the fibers
are circular and are packed in a square array. Also, get the value of the
shear modulus by using Hewitt and Malherbe’s8 formula for the reinforc-
ing factor.

Solution

For Halphin–Tsai’s equations with circular fibers in a square array, the rein-
forcing factor ξ = 1. From Example 3.6, the shear modulus of the fiber is

Gf = 35.42 GPa

and the shear modulus of the matrix is

Gm = 1.308 GPa.

From Equation (3.61),

From Equation (3.60), the in-plane shear modulus is

For the same problem, the value of G12 = 4.013 GPa was found by the
mechanics of materials approach in Example 3.5.

Because the volume fraction is greater than 50%, Hewitt and Mahelbre8

suggested a reinforcing factor (Equation 3.62):
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Then, from Equation (3.61),
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.

From Equation (3.60), the in-plane shear modulus is

.

Figure 3.17a and Figure 3.17b show the in-plane shear modulus as a func-
tion of fiber volume fraction for a typical glass/epoxy composite. The Hal-
phin–Tsai equation (3.60) and the mechanics of materials approach, Equation
(3.55) are shown and compared to the experimental4 data points.

3.3.3 Elasticity Approach

In addition to the strength of materials and semi-empirical equation
approaches, expressions for the elastic moduli based on elasticity are also
available. Elasticity accounts for equilibrium of forces, compatibility, and
Hooke’s law relationships in three dimensions; the strength of materials
approach may not satisfy compatibility and/or account for Hooke’s law in
three dimensions, and semi-empirical approaches are just as the name
implies — partly empirical.

The elasticity models described here are called composite cylinder assem-
blage (CCA) models.4,9–12 In a CCA model, one assumes the fibers are circular
in cross-section, spread in a periodic arrangement, and continuous, as shown
in Figure 3.18. Then the composite can be considered to be made of repeating
elements called the representative volume elements (RVEs). The RVE is
considered to represent the composite and respond the same as the whole
composite does.

The RVE consists of a composite cylinder made of a single inner solid
cylinder (fiber) bonded to an outer hollow cylinder (matrix) as shown in
Figure 3.19. The radius of the fiber, a, and the outer radius of the matrix, b,
are related to the fiber volume fraction, Vf , as

. (3.63)

Appropriate boundary conditions are applied to this composite cylinder
based on the elastic moduli being evaluated.
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